Gravitational form factors (GFFs) characterize the distribution of energy, angular momentum, and forces within a hadron, analogous to the charge and magnetization distributions encoded by electromagnetic form factors. GFFs can experimentally be extracted from generalized parton distributions (GPDs), which are themselves measured in hard exclusive reactions such as deeply virtual Compton...
With the design of an EIC, advancements in theory and further development of phenomenological tools, we are now preparing for the next step in subnuclear tomographic imaging. The collider's large range of center-of-mass energy, in combination with very high luminosity and polarization of both the lepton and the hadron beams, will open a unique opportunity for very high precision measurements...
A future electron-ion collider (EIC) with forward detectors would allow for measurements of coherent production of two vector mesons on proton and deuteron targets. In kinematics where the two vector mesons are separated by a large rapidity gap, one vector meson is produced at large transverse momenta and the other is transversily polarized, this process can probe the transversity generalized...
Generalised Parton Distributions (GPDs) are a key point of the EIC physics case as they encode the 3D structure of hadrons. Contrary to the usual Parton Distribution Functions (PDFs) they have to obey a certain number of theoretical properties coming from first principle considerations. Both extraction and modelling of GPDs must therefore fulfil these criteria, especially at a time when...
We will consider quarkonium production in proton-proton and lepton-proton collisions, within a TMD approach. We will discuss the relative role of the NRQCD color-singlet and color-octet production mechanisms both in the unpolarized cross section and in the transverse single-spin asymmetries. Focus will be put on linearly polarized gluons in unpolarized and transversely polarized targets as...
The capability of accelerating a high-intensity polarized $^{3}$He ion beam would provide an effective polarized neutron beam for the study of new high-energy QCD studies of nucleon structure. This development is essential for the future Electron Ion Collider, which could use a polarized $^{3}$He ion beam to probe the spin structure of the neutron. The proposed polarized $^{3}$He ion source...
The EIC physics goals require high luminosity and a full-acceptance detector. In order to meet these goals, the interaction region design needs to address large asymmetries between the ion and electron beams, and the presence of collision products traveling near the ion beam downstream from the IP. Since it is still not possible to separate all the collision products of interest prior to the...
The Jefferson Lab Electron Ion Collider (JLEIC) is a proposed new nuclear physics facility designed to deliver high luminosity and high polarization electron-ion collisions. JLEIC employs high repetition rate collisions of short low emittance bunches to achieve the electron ion luminosity goal of 10^{33}-10^{34}cm^{-2}s^{-1} over a wide range of center-of-mass energy. With a growing physics...
We present the progress and approach of the eRHIC RCS electron injector development. The RCS is designed to deliver 5, 10 and 18 GeV polarized electrons to the eRHIC storage ring. The approach involves using a special symmetry to avoid polarization losses due to intrinsic spin resonances during the acceleration cycle and a robust spin imperfection correction scheme to correct residual...
The radio frequency (RF) systems in an EIC performs a wide range of functions from increase particle energy, bunch splitting or lengthening, to beam rotation, and maintain beam stability, etc. In this talk, an overview of the RF systems for both eRHIC and JLEIC designs is introduced. The subsystems and their necessity to the design luminosity will be presented.
The high luminosity LHC (HL-LHC) will use transverse deflecting superconducting cavities (aka crab cavities) to achieve head-on collisions at the interaction points (IP1 and IP5). Crab cavities will recover the geometric luminosity loss due to the finite crossing angle at the IPs without which the peak luminosity loss can be up to 70 %. The the development of the superconducting crab cavities...
EIC Experiments require excellent hadron identification, over a broad momentum range, in harsh conditions. A RICH capable to fulfill the PID requirements of the EIC could use MPGD-based Photon Detectors (PDs) with solid photocathodes. This technology allows covering large surfaces at affordable cost, provides good efficiency, high resolution and compatibility with magnetic field.
PDs based on...
We propose to develop a concept for forward and backward tracking detectors near the collision vertex at pseudo-rapidity 1<|eta|<3.5 using small strip Thin Gap Chamber (sTGC) technology. This represents an attractive option for building a tracking device as they have minimum material budget, are easy to construct, and most-importantly, are cost effective. We aim on the detection of all charged...
At the University of Birmingham, work on the EIC research and development is focused on the silicon vertex tracker, which is the detector closest to the interaction point. Simulations are carried out in an effort to determine the performance of different silicon vertex tracker layouts, and tests are made on individual sensors to find the optimal technology to use, utilising the Birmingham...
With the advent of cheap, highly integrated and fast converter
electronics, the old and limiting paradigm of a hardware-triggered read
out solution can be replaced with a fully streaming readout system, in
which data selection is moved into the software domain. In the talk, the
advantages of such a system and its implications in the context of EIC
will be discussed.
Modern tracking gaseous detectors based on micro pattern readout, or MPGDs, are becoming the standard in high energy physics experiments. This is thanks to their great time (better than 10ns) and spatial (up to 50µm) resolutions, low energy budget (down to 0.4% of a X0), high rate capabilities (several kHz/mm2), high tolerance to radiation, and relatively low cost per area. In addition to...
General-purpose Monte Carlo event generators are essential tools for any high-energy collider experiments by acting as a link between first-principle calculations and complicated final states measured in the detectors. Large amount of data from different LHC experiments have lead to many recent improvements in perturbative treatment and phenomenological models describing the non-perturbative...
Machine Learning has become a field of great interest lately with newly established software and hardware technologies providing numerous applications. HEP experiments have already begun implementing ML in areas of triggering systems, data quality monitoring, and data analysis. There are several areas were an EIC could potentially exploit ML technology in similar and perhaps unique ways. Some...
We would like to report a series of studies and prototyping for data acquisition for EIC experiments. The EIC data rate is estimated based on full detector Geant4 simulations, which define the strategy in the DAQ design. The DAQ architecture is based on a high-performance FPGA-based PCI-express DAQ interface, which bridges custom front-end and commodity computing. This series of interface...
A generic software suite for simulation and reconstruction has been developed to facilitate EIC prototype detector R&D, physics studies and full detector designs. At its core, it is based on Fun4All, a compact and versatile software framework. It has been used in the PHENIX experiment to process tens of petabytes of data each year at BNL, and has been continually developed by the sPHENIX...
I will discuss the recent developments and near future plans for the Sartre event generator for the EIC. Sartre simulates exclusive vector meson and DVCS production at small x for electron-ion/hadron collisions. It contains models for both saturated and non-saturated QCD. We have added the UPC processes for exclusive vector mesons to the generator, which enable us to test our model against LHC...
The Electron-Ion Collider, with its physics goals of studying in detail perturbative and non-perturbative QCD, requires a complete acceptance detector with high precision tracking, good vertex resolution, and excellent particle identification. The Timing Optimized PID Silicon Detector for the EIC (TOPSiDE) is a proposed concept of such a detector. In the barrel region, it is mainly divided...
Relativistic magnetized electron cooling is essential for achieving the ion beam luminosity requirements of proposed electron-ion collider (EIC) designs. Because the cooling system will have to operate in previously untested parameter regimes, accurate computation of magnetized dynamic friction is required at the design stage. In particular, one has to include all relevant physics that might...