Speaker
Description
Light nuclei are found in core-collapse supernova matter and in binary neutron star mergers. Their abundance can affect the dynamics and properties of supernovae [1-3] and binary neutron star mergers [4-8], both directly through their weak reactions with the surrounding medium, and indirectly through their competition with heavy nuclei [9], which can modify the proton fraction and the size of nucleosynthesis seeds [10]. They can also have a significant (indirect) effect on the dynamics of the core-collapse supernova explosion giving rise to a faster shock retreat and an early neutrino luminosity [11], even though, only a negligible (direct) impact from the weak reactions involving the light clusters was obtained. The transport coefficients are determined by the collision rates of electrons and/or neutrinos with clusters, which in turn depend on the cluster abundances and sizes. In binary mergers, the recombination of free nucleons into $\alpha$ particles can generate enough energy to induce mass outflows [12]. Therefore, the study of light nuclei is essential to obtain a good description of these astrophysical events. In particular, in the scope of relativistic mean-field models, their nuclear couplings need to be calibrated to experimental data such as heavy-ion collisions. In this work [15], we propose a Bayesian inference estimation of in-medium modification of the cluster self-energies from light nuclei multiplicities measured in selected samples of central $^{136,124}$Xe$+^{124,112}$Sn collisions with the INDRA apparatus. The data are interpreted with a relativistic quasi-particle cluster approach in the mean-field approximation without any prior assumption on the thermal parameters of the model. An excellent reproduction is obtained for H and He isotope multiplicities, and compatible posterior distributions are found for the unknown thermal parameters, for two different nuclear models.
[1] A. Arcones, G. Martínez-Pinedo, E. O’Connor, A. Schwenk, H.-T. Janka, C. J. Horowitz, and K. Langanke, Phys. Rev. C 78, 015806 (2008).
[2] K. Sumiyoshi and G. Roepke, Phys. Rev. C 77, 055804 (2008).
[3] S. Furusawa, H. Nagakura, K. Sumiyoshi, and S. Yamada, Astrophys. J. 774, 78 (2013).
[4] A. Bauswein, S. Goriely, and H. T. Janka, Astrophys. J. 773, 78 (2013).
[5] S. Rosswog, Int. J. Mod. Phys. D 24, 1530012 (2015).
[6] D. Radice, A. Perego, K. Hotokezaka, S. A. Fromm, S. Bernuzzi, and L. F. Roberts, Astrophys. J. 869, 130 (2018).
[7] G. Navó, M. Reichert, M. Obergaulinger, and A. Arcones, Astrophys. J. 951, 112 (2023).
[8] A. Psaltis, M. Jacobi, F. Montes, A. Arcones, C. J. Hansen, and H. Schatz, Astrophys. J. 966, 11 (2024).
[9] H. Pais, F. Gulminelli, C. Providência, and G. Röpke, Phys. Rev. C 99, 055806 (2019).
[10] V. Nedora, S. Bernuzzi, D. Radice, B. Daszuta, A. Endrizzi, A. Perego, A. Prakash, M. Safarzadeh, F. Schianchi, and D. Logoteta, The Astrophysical Journal 906, 98 (2021).
[11] T. Fischer, S. Typel, G. Röpke, N.-U. F. Bastian, and G. Martínez-Pinedo, Phys. Rev. C 102, 055807 (2020).
[12] A. M. Beloborodov, AIP Conf. Proc. 1054, 51 (2008), arXiv:0810.2690 [astro-ph].
[13] W. H. Lee, E. Ramirez-Ruiz, and D. Lopez-Camara, Astrophys. J. Lett. 699, L93 (2009), arXiv:0904.3752 [astro-ph.HE].
[14] R. Fernandez and B. D. Metzger, Astrophys. J. 763, 108 (2013), arXiv:1209.2712 [astro-ph.HE].
[15] T. Custódio, A. Rebillard-Soulié, R. Bougault, D. Gruyer, F. Gulminelli, T. Malik, H. Pais, and C. Providência, Phys. Rev. Lett. 134, 082304 (2025)