22–26 Sept 2025
Moho
Europe/Paris timezone

Calibrating the medium effects of light clusters in heavy-ion collisions

Not scheduled
20m
Moho

Moho

16 bis Quai Hamelin 14000 CAEN
Oral Presentation Nuclear Astrophysics Parallel session

Speaker

Tiago Custódio (University of Coimbra)

Description

Light nuclei are found in core-collapse supernova matter and in binary neutron star mergers. Their abundance can affect the dynamics and properties of supernovae [1-3] and binary neutron star mergers [4-8], both directly through their weak reactions with the surrounding medium, and indirectly through their competition with heavy nuclei [9], which can modify the proton fraction and the size of nucleosynthesis seeds [10]. They can also have a significant (indirect) effect on the dynamics of the core-collapse supernova explosion giving rise to a faster shock retreat and an early neutrino luminosity [11], even though, only a negligible (direct) impact from the weak reactions involving the light clusters was obtained. The transport coefficients are determined by the collision rates of electrons and/or neutrinos with clusters, which in turn depend on the cluster abundances and sizes. In binary mergers, the recombination of free nucleons into $\alpha$ particles can generate enough energy to induce mass outflows [12]. Therefore, the study of light nuclei is essential to obtain a good description of these astrophysical events. In particular, in the scope of relativistic mean-field models, their nuclear couplings need to be calibrated to experimental data such as heavy-ion collisions. In this work [15], we propose a Bayesian inference estimation of in-medium modification of the cluster self-energies from light nuclei multiplicities measured in selected samples of central $^{136,124}$Xe$+^{124,112}$Sn collisions with the INDRA apparatus. The data are interpreted with a relativistic quasi-particle cluster approach in the mean-field approximation without any prior assumption on the thermal parameters of the model. An excellent reproduction is obtained for H and He isotope multiplicities, and compatible posterior distributions are found for the unknown thermal parameters, for two different nuclear models.

[1] A. Arcones, G. Martínez-Pinedo, E. O’Connor, A. Schwenk, H.-T. Janka, C. J. Horowitz, and K. Langanke, Phys. Rev. C 78, 015806 (2008).
[2] K. Sumiyoshi and G. Roepke, Phys. Rev. C 77, 055804 (2008).
[3] S. Furusawa, H. Nagakura, K. Sumiyoshi, and S. Yamada, Astrophys. J. 774, 78 (2013).
[4] A. Bauswein, S. Goriely, and H. T. Janka, Astrophys. J. 773, 78 (2013).
[5] S. Rosswog, Int. J. Mod. Phys. D 24, 1530012 (2015).
[6] D. Radice, A. Perego, K. Hotokezaka, S. A. Fromm, S. Bernuzzi, and L. F. Roberts, Astrophys. J. 869, 130 (2018).
[7] G. Navó, M. Reichert, M. Obergaulinger, and A. Arcones, Astrophys. J. 951, 112 (2023).
[8] A. Psaltis, M. Jacobi, F. Montes, A. Arcones, C. J. Hansen, and H. Schatz, Astrophys. J. 966, 11 (2024).
[9] H. Pais, F. Gulminelli, C. Providência, and G. Röpke, Phys. Rev. C 99, 055806 (2019).
[10] V. Nedora, S. Bernuzzi, D. Radice, B. Daszuta, A. Endrizzi, A. Perego, A. Prakash, M. Safarzadeh, F. Schianchi, and D. Logoteta, The Astrophysical Journal 906, 98 (2021).
[11] T. Fischer, S. Typel, G. Röpke, N.-U. F. Bastian, and G. Martínez-Pinedo, Phys. Rev. C 102, 055807 (2020).
[12] A. M. Beloborodov, AIP Conf. Proc. 1054, 51 (2008), arXiv:0810.2690 [astro-ph].
[13] W. H. Lee, E. Ramirez-Ruiz, and D. Lopez-Camara, Astrophys. J. Lett. 699, L93 (2009), arXiv:0904.3752 [astro-ph.HE].
[14] R. Fernandez and B. D. Metzger, Astrophys. J. 763, 108 (2013), arXiv:1209.2712 [astro-ph.HE].
[15] T. Custódio, A. Rebillard-Soulié, R. Bougault, D. Gruyer, F. Gulminelli, T. Malik, H. Pais, and C. Providência, Phys. Rev. Lett. 134, 082304 (2025)

Author

Tiago Custódio (University of Coimbra)

Presentation materials

There are no materials yet.