22–26 Sept 2025
Moho
Europe/Paris timezone

Gamow Shell Model description of near-threshold resonances in 11C

Not scheduled
20m
Moho

Moho

16 bis Quai Hamelin 14000 CAEN
Oral Presentation Nuclear Astrophysics Parallel session

Speaker

Alan Cruz Dassie (Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM - CNRS/IN2P3, BP 55027, F-14000 Caen, France)

Description

The Carbon-11 nucleus plays an important role in first start nucleosynthesis patterns [1] as a composite of the reaction $^{10}\mathrm{B}(p,\alpha)^{7}\mathrm{Be}$, which act in the hot pp-chains [2] by back processing material branching across the mass $A = 5$ and $A = 8$ mass gap towards $^{10}\mathrm{B}$. The $^{11}\mathrm{C}$ resonances $J^\pi = 5/2^+_2$ and $J^\pi = 7/2^+_1$, 10 keV above and 40 keV below the proton-threshold [3,4], respectively, may impact on the $^{10}\mathrm{B}(p,\alpha)^{7}\mathrm{Be}$ reaction. A shell-model embed in the continuum analysis [5] found that the strong coupling to the one-proton channel $\left[^{10}\mathrm{B}(3^+)\otimes p(lj)\right]^{J^+}$ changes their structure significantly.

To deepen the theoretical analysis, we propose the Gamow shell model (GSM) [6,7] approach. GSM offers a unifying framework with the open quantum system formulation thanks to couplings between discrete and scattering states, as it makes use of the Berggren ensemble [8] of single-particle states. In order describe the scattering properties and reactions, we formulate the GSM in the couple-channel representation (GSM-CC) [9]. Then, the Hamiltonian matrix becomes complex symmetric since the resonances are calculated using the Berggren basis.

Using different mass partitions in the coupled-channel representation, we applied the GSM-CC to reproduce the energies and widths of the $^{11}\mathrm{C}$ excited states above the alpha-threshold. We were able to identify how the excited channel of $\left[^{10}\mathrm{B}\otimes p\right]^{J^+}$ and the presence of the alpha-channels affects the near threshold resonances. Furthermore, we applied the GSM-CC to describe the cross-sections of different types of elastic ($^{10}\mathrm{B}(p,p)^{10}\mathrm{B}$, $^{11}\mathrm{C}(\alpha,\alpha)^{11}\mathrm{C}$), radiative capture ($^{10}\mathrm{B}(p,\gamma)^{11}\mathrm{C}$, $^{7}\mathrm{Be}(\alpha,\gamma)^{11}\mathrm{C}$) and transfer ($^{10}\mathrm{B}(p,\alpha)^{7}\mathrm{Be}$) reactions.

References:
[1] M. Wiescher, O. Clarkson, R. J. deBoer, and P. Denisenkov, The European Physical Journal A 57, 24 (2021).
[2] M. Wiescher, J. Gorres, S. Graff, L. Buchmann, and F. K. Thielemann, The Astrophysical Journal 343, 352 (1989).
[3] M. Wiescher, R. J. deBoer, J. Görres, and R. E. Azuma, Physical Review C 95, 044617 (2017).
[4] C. Angulo, W. H. Schulte, D. Zahnow, G. Raimann, and C. Rolfs, Zeitschrift für Physik A Atoms and Nuclei 345, 333 (1993).
[5] J. Okolowicz, M. Ploszajczak, and W. Nazarewicz, Physical Review C 107, L021305 (2023).
[6] N. Michel, W. Nazarewicz, M. Ploszajczak, and T. Vertse, Journal of Physics G: Nuclear and Particle Physics 36 (2009).
[7] N. Michel and M. Ploszajczak, Gamow Shell Model: The Unified Theory of Nuclear Structure and Reactions, Lecture Notes in Physics, Vol. 983 (Springer International Publishing, Cham, 2021).
[8] T. Berggren, Nuclear Physics A 109, 265 (1968).
[9] Y. Jaganathen, N. Michel, and M. Ploszajczak, Physical Review C 89, 034624 (2014).

Authors

Alan Cruz Dassie (Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM - CNRS/IN2P3, BP 55027, F-14000 Caen, France) Marek Płoszajczak (Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM - CNRS/IN2P3, BP 55027, F-14000 Caen, France) Nicolas Michel (AS Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China)

Presentation materials

There are no materials yet.