Présidents de session
Medical imaging applications
- Eric CHABERT (IPHC/UDS)
CMOS image sensors nowadays the dominant imaging technology, are being deployed in many applications, from consumer to machine vision, from industrial to automotive. They are now also used in scientific as well as medical and life science. In these fields, the requirements can be as varied as very low noise for scientific applications, or area coverage for medical and speed for life science....
The 100µPET project is developing a pre-clinical medical scanner for positron-emission tomography (PET) with ultra-high-resolution molecular imaging capabilities. The scanner is composed of multiple layers of monolithic active pixel sensors (MAPS) connected to flexible printed circuits (FPC). With pixels of 150 µm pitch and a thickness of 280 µm + 300 µm (MAPS + FPC), the scanner achieves...
Neutrons are one of the main secondary radiations produced by particle accelerators. They are therefore a key element in the radiation protection of facilities used for fundamental research or medical and industrial applications (production of radionuclides, hadrontherapy, sterilization). The main risks relate both to the radiation dose received by people exposed to neutrons (workers,...
Due to the physical principles of the energy deposition of charged particles in matter, proton therapy allows a very precise dose deposition in the tumour, which leads to better protection of healthy tissue compared to photon radiotherapy. At the same time, the maximum dose deposition at the end of the proton trajectory is more sensitive to uncertainties in the range of the protons. A...