LA-CoNGA-Physics Consortium meeting

Europe/Paris
Jose Ocariz (LPNHE), Reina Camacho Toro (LPNHE)
Description

Topic: LA CoNGA Reunión Consorcio

https://redclara.zoom.us/j/95459721123
Meeting ID: 954 5972 1123
Password: 981632 

Apuntes de la reunión de consorcio LA-CoNGA, viernes 11 de septiembre 2020

(action items subrayados)

(apuntes tomados por José, favor enviar sugerencias/comentarios correcciones)

A) Noticias de la coordinación (Andrea)

  • 6 PAs enviados a la presidenta de UP. Faltan aún 4 por recibir: UIS, TUD, UCV, USB.
    • Monitorear el avance en su instituto
  • Lista de interlocutores administrativos:  https://docs.google.com/spreadsheets/d/1SKgIBCAWVJ8hlqoN9gdWji9qE6-9Q5-Tzhz1JLFMwpA
    • Revisar y actualizar si necesario

 

B) Tema principal : avances y reportes en los 3 syllabi: teoría, datos, instrumentación

B.1) Recordatorio :

 

  • créditos educativos en ECTS. (1 ECTS ~ 25 horas de trabajo de estudiante)
  • un año de Master = 60 ECTS
  • primer semestre: 10 ECTS para cada bloque de competencias (teoría, datos, instrumentación).
  • segundo semestre: 5+5 ECTS de electivas, 1  ECTS hackathon, 1 ECTS citizen science, 3 ECTS pre-internship, 15 ECTS internship.

 


B.2) Syllabus de datos (Reina, con inputs de Camila, Pierre y otros)

 

  • 1er semestre en tres mini-módulos secuenciales: RSE (2 ECTS), estadística (5), hands-on projets (3)
    • RSE+estadística  comunes a las 2 filiales
  • Los proyectos se diferencian según las filiales
    • SC: 2 mini-cursos (MonteCarlo y dinámica molecular) seguidos por 1 proyecto (simulaciones y/o analísis de datasets)
    • AE: 2 proyectos, uno con datos experimentales, otro con datos provenientes de la industria u otras ramas
  • Completar las listas de proyectos
  • Identificar profesores/instructores
  • Proponer temas para electivas del 2do semestre: p.e. ML, advanced topics...


B.3) Syllabus de instrumentación

 

  • Lista de material para proyectos AE preparada por Dennis (CAEN+Keysight+Dell)
    • a ser completada con una lista para proyectos experimentales SC.
  • 1er semestre con 3 mini-módulos semi-secuenciales: electrónica (2 ECTS), detectores+demostraciones (3), proyectos experimentales (5)
    • definir/completar la lista de demostraciones para el mini-módulo de detectores


B.4) Syllabus de teoría (José, con inputs de Anamaría, Pierre, Carlos, JAL, Jorge y otros)

 

  • Discusión general: perfil del estudiante, volumen horario, diferenciación AE/SC...
  • Presentación de propuestas: Anamaría+Pierre, Reina+Carlos, JAL+Jorge
  • Discusión abierta
    • Inquietudes principales: ¿cómo harmonizar el perfil de ingreso? ¿son 8+8+8 semanas suficientes? ¿es realista?
  • Después de numerosas intervenciones, algunos consensos emergieron
    • Estructura cronológica en 8+8+8 semanas:
      • 1er semestre: 8 semanas de curso común AE+SC, seguidas por 8 semanas de cursos específicos para cada filial
      • 2do semestre: 8 semanas para 2 electivas avanzadas, diferentes para cada filial (¿aunque no excluyentes?)
      • Perfil de egreso: estudiante con formación en los 3 bloques temáticos, con conocimientos teóricos que le permitan hacer un PhD en AE (mayoritariamente experimental) o SC, y/o inserirse en la vida profesional.
  • dada la importancia de esta discusión, esta se retomará en las próximas reuniones de consorcio
  • objetivo: converger en un syllabus completo muy pronto (<2 semanas)


C) Plataforma de e-learning (Arturo, Luis)

  • aplazada a la reunión siguiente


 

Il y a un compte-rendu associé à cet événement. Les afficher.
    • 16:00 16:20
      Noticias de la coordinación 20m
      Orateurs: Grijalva Andrea (Université de Paris), Jose Ocariz (LPNHE), Reina Camacho Toro (LPNHE)
    • 16:20 16:40
      Syllabus de datos : avances y reporte 20m
      Orateurs: Camila Rangel-Smith (the Alan Turing Institute), M. Pierre Pujol (UPS Toulouse), Reina Camacho Toro (LPNHE)
    • 16:40 17:00
      Syllabus de teoría : avances y reporte 20m
      Orateurs: Mme Anamaría Font (UCV), Pierre Pujol (Toulouse)

      Regarding the HEP side of the course

      From Reina, Carlos and Camila

       

      Profile of the students that will start the program: (we have gather this from discussions in previous meetings)

      - Some students joining LA-CoNGA physics would have a background on engineering or natural sciences (not necessarily physics). As far as we know this can be the case at UAN and Yachay. They will not have the background to follow a very formal QFT course 
      - Other students will be physicists interested in doing experimental particle physics and who have already taken formal QFT courses

      Based on this we suggest to follow a phenomenological approach for the courses in the theory axis. At the end of the program students need to globally understand the physics behind the data analysis projects that will be proposed in LA-CoNGA physics and be able to follow a discussion involving particle physics phenomenologists and theorists at the global level.

       

      What do we want students to know from the theory axis courses:

       

      • Review of special relativity and quantum mechanics concepts

       

      • What is matter made of? -> Made of particles
        • Historical introduction: main experiments and ideas that took us where we are now in HEP. General overview before going deeper into the theory. The students should understand the close relationship between theory and experiment… It’d be useful to built the particle physics zoo/table historically

       

      • Main observables measured in particle physics experiments:
        • Invariant masses
        • List of phenomena in particle physics: scattering, decay, creation and annihilation -> introduce the concepts of decay rates, cross-section, differential cross-section

       

      • How to compute those observables?
        • Lagrangians
        • Feynman diagrams

       

      • How do these fundamental particles interact? -> Review of the fundamental forces (well, gravitation is out). For each one of the interactions ideally start with pheno intro and some historical background if posible, introduce the lagrangian, Feynman diagrams for each interaction
        • Quantum Electrodynamics (QED) 
          • Fields and Feynman rules
          • Radiative corrections, running coupling 
          • Experimental tests of QED: measurements of alpha, Bhabha scattering, Mass and charge of the photon

       

        • Quantum Chromodynamics (QCD)
          • Gauge principles: SU(3), comparison between QED and QCD
          • Deep Inelastic Scattering (experimental evidence of the structure of the proton)
          • Perturbative QCD: Feynman rules, color factors, experimental measurements (experimental color evidence)
          • Confinement, hadronization and jets, alpha_S measurements
          • Hadron collisions (Soft and collinear divergences, Jets and infrared safety, Initial state and factorization, Monte Carlo event generators, jet reconstruction ) -> Maybe this can be a special class/seminar devoted to this

       

        • Charged weak interaction
          • Couplings and applications
          • Theoretical basics and parity violation, experimental tests for V-A interactions
          • Properties of the W boson, Z boson
          • CP violation and flavor physics: matrix CKM
        • The Standard Model (SM)
          • Neutral currents and electroweak unification 
          • Tests of the EWK model and top quark
          • Higgs boson: discovery and properties,  constraints from W and top on the Higgs mass
          • Complete Lagrangian of the SM

       

        • Neutrinos -> Maybe this can be a special class/seminar devoted to this
          • Neutrino Oscillations
          • Observables and their measurement 
        •  Open questions; beyond the SM -> Just one class. A full course can be developed for the second semester
          • The limitations of the SM
          • Short introduction to searches for physics beyond the SM

       

      • Bibliography?
        • (First 3 references) https://events.lal.in2p3.fr/NPAC1415/plans-cours/Plan-particules.pdf
        • D. H. Perkins, Introduction to high energy physics, Cambridge University Press.

        • A. Seiden, Particle physics - a comprehensive introduction, Addison-Wesley.

        • F. HalzenandA.D.Martin, Quarks and leptons: an introductory course in modern particle physics, John Wiley & Sons

        • Robert Can and Gerson Goldhaber,The experimental foundations of Particle Physics 

      •  How this interplay with the first part of the course (the common part) proposed already: https://indico.in2p3.fr/event/22310/contributions/86461/attachments/59816/81021/20200908_LA-CoNGA_theory_2.pdf

        • We believe they can be complementary. In this common part you already included some of the points we listed: Review of special relativity and quantum mechanics concepts, lagrangians, Feynman diagrams

        • Also if the spontaneous symmetry breaking is introduced in this common part then it will be easier/faster to describe the SM section

        • The list we propose is long, some of them can be introduced without going in too many details: neutrinos, CKM matrix, hadron collisions. They can be treated in invited seminars or maybe as advanced (very short) courses for the second semester 

    • 17:00 17:20
      Plataforma de e-learning : avances y reporte 20m
      Orateurs: M. Arturo Sanchez (ICTP + CERN), M. Luis Núñez de Villavicencio (IUS)
    • 17:20 17:40
      AOB (todos) 20m