10–12 déc. 2025
Institut de Physique Théorique, CEA-Saclay
Fuseau horaire Europe/Paris

Resuming perturbative invariants of hyperbolic knots

11 déc. 2025, 10:15
45m
Salle Itzykson (Institut de Physique Théorique, CEA-Saclay)

Salle Itzykson

Institut de Physique Théorique, CEA-Saclay

CEA, Orme des Merisiers Bat 774, 91191 Gif-sur-Yvette, France

Orateur

Veronica Fantini (Université Paris-Saclay)

Description

Given a hyperbolic knot, the Andersen-Kashaev state integrals are convergent integrals associated with certain triangulations of the knot complement. Their asymptotic expansion is a perturbative topological invariant conjectured to be resurgent and Borel summable by Garoufalidis, Gu, and Mariño.
Motivated by resuming these perturbative invariants, we define a new homology theory that allows us to construct exponential period integrals, whose asymptotic expansion recovers the original divergent series.
In this talk, I will explain the main ideas of our construction, and time permitting, how they can be generalized to study similar classes of exponential period integrals (e.g. Feynman integrals in the Baikov representation).

Based on a joint project with C. Wheeler (arXiv:2410.20973) and our ongoing work together with J. E. Andersen and M. Kontsevich.

Documents de présentation

Aucun document.