Resuming perturbative invariants of hyperbolic knots

Veronica Fantini

Laboratoire Mathématique d'Orsay — Université Paris-Saclay

Based on arXiv:2410.20973 joint with C. Wheeler

Observables in gauge theory and gravity

IPhT, Université Paris-Saclay, 11 December 2025

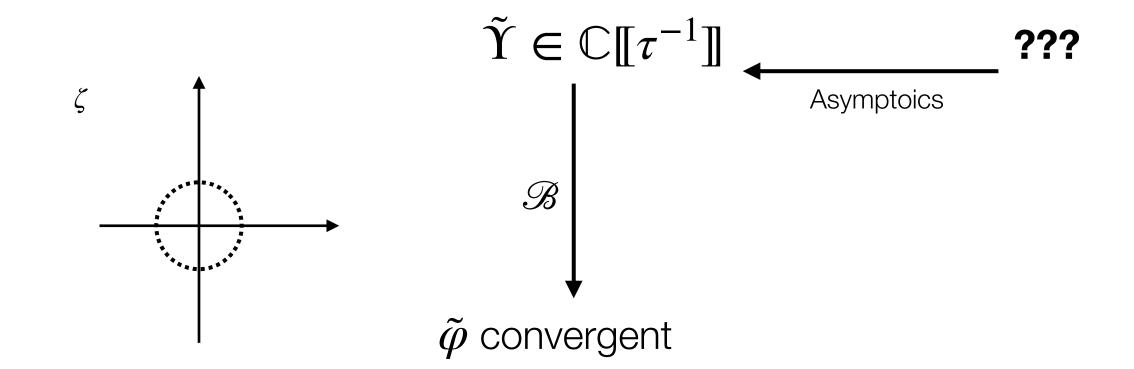
Plan of the talk

- 1. Quick overview of Borel summation
- 2. Perturbative invariants for hyperbolic knots
- 3. Homology theory relative to the dilogarithm
- 4. Conclusions

Borel resuming a Gevrey-1 divergent $ilde{\Upsilon}$ series allows constructing an analytic function, the Borel sum, which is asymptotic to $ilde{\Upsilon}$

$$\tilde{\Upsilon} \in \mathbb{C}[\![\tau^{-1}]\!] \qquad ???$$
Asymptoics

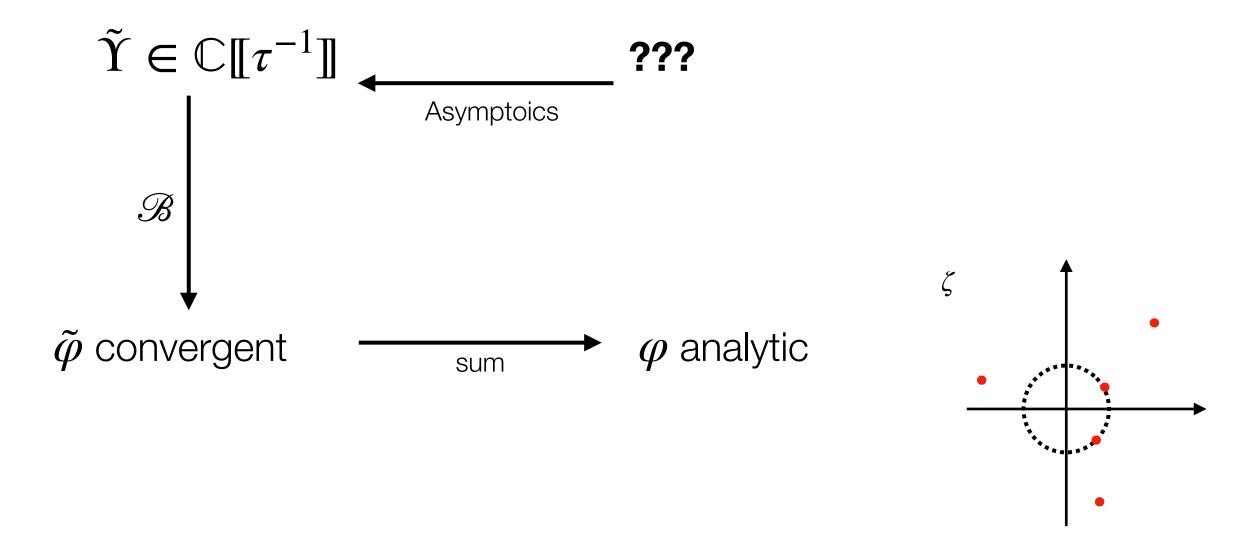
Borel resuming a Gevrey-1 divergent $ilde{\Upsilon}$ series allows constructing an analytic function, the Borel sum, which is asymptotic to $ilde{\Upsilon}$



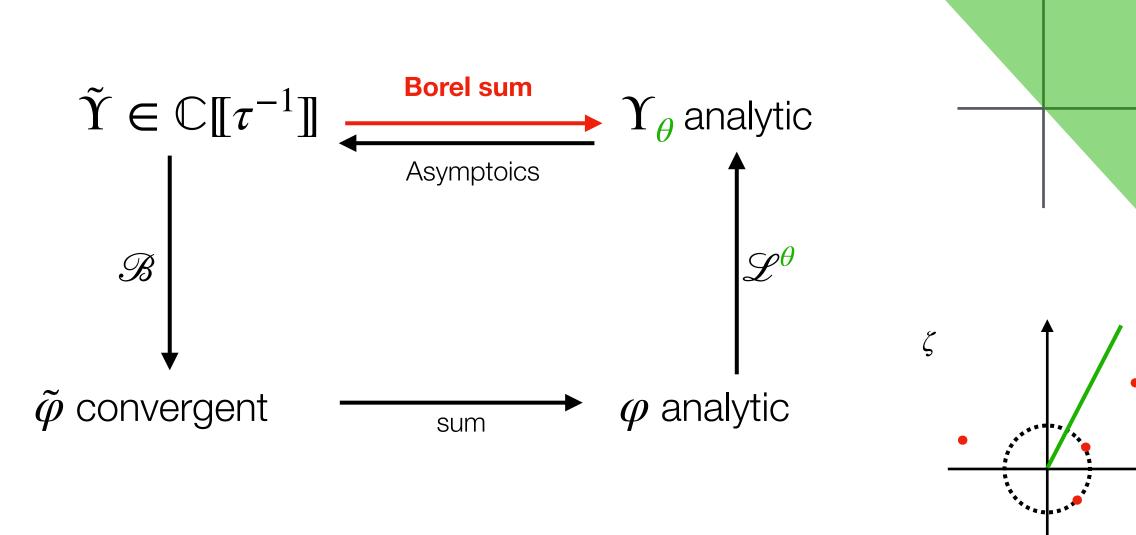
The Borel transform
$$\mathscr{B} \colon \mathbb{C}[\![\tau^{-1}]\!] \mapsto \mathbb{C}[\![\zeta]\!]$$
 is defined as $\mathscr{B} \colon \sum_{n=1}^{\infty} a_n \tau^{-n} \longmapsto \sum_{n=1}^{\infty} a_n \frac{\zeta^{n-1}}{(n-1)!}$

A divergent series is **Gevrey-1** if and only if its Borel transform is convergent

Borel resuming a Gevrey-1 divergent $ilde{\Upsilon}$ series allows constructing an analytic function, the Borel sum, which is asymptotic to $ilde{\Upsilon}$



Borel resuming a Gevrey-1 divergent $ilde{\Upsilon}$ series allows constructing an analytic function, the Borel sum, which is asymptotic to $ilde{\Upsilon}$

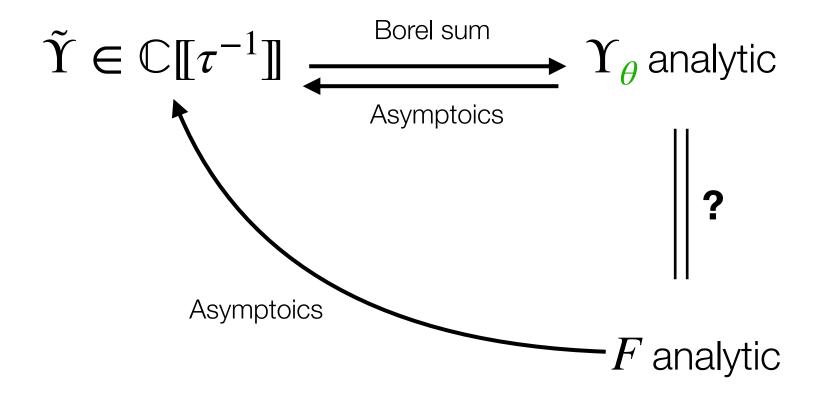


The **Laplace transform** in the direction θ is $\mathscr{L}^{\theta}\varphi(\tau) := \int_0^{e^{\mathrm{i}\theta}\infty} e^{-\tau\zeta}\varphi(\zeta)\,d\zeta$

Varying the direction θ , the function Υ_{θ} might jump: $\Upsilon_{\theta_+} - \Upsilon_{\theta_-} = S \Upsilon_{\theta_-}$ for some constant $S \in \mathbb{C}$ called the **Stokes constant**

Effectiveness of Borel summability

An analytic function F, whose asymptotic expansion is a divergent series $ilde{\Upsilon}$, is **Borel regular** if it agrees with the Borel sum of $ilde{\Upsilon}$



Thm [Nevanlinna 1918] An analytic function F is Borel regular if and only if it is uniformly Gevrey asymptotic to a divergent series Υ in a domain of opening angle $\geq \pi$

The q-Pochhammer symbol $(qz;q)_{\infty}$, $q=\exp(2\pi i\,\tau)$ is not Borel regular as $\tau\to 0$ with ${\rm Im}(\tau)>0$

Perturbative invariants for hyperbolic knots

Observables as exponential integrals

Sometimes, in mathematical physics, the quantities of interest are of the following form

$$\int e^{-\tau f(\mathbf{z})} \, \varphi(\mathbf{z}, \tau) \, d\mathbf{z}$$

 $f: X \to \mathbb{C}$ is an **algebraic map** on the complex **n-dimensional** variety X

 $\varphi(\mathbf{z}, \tau)$ is analytic in $\mathbf{z} \in X$ and $\tau \in \mathbb{C}$

Observables as exponential integrals

Sometimes, in mathematical physics, the quantities of interest are of the following form

$$\int e^{-\tau f(\mathbf{z})} \, \varphi(\mathbf{z}, \tau) \, d\mathbf{z}$$

 $f: X \to \mathbb{C}$ is an **algebraic map** on the complex **n-dimensional** variety X

 $\varphi(\mathbf{z}, \tau)$ is analytic in $\mathbf{z} \in X$ and $\tau \in \mathbb{C}$

Then one can ask:

What is a **good contour** of integration?

What is the **behaviour for large** τ ?

Thimble integrals

Assuming

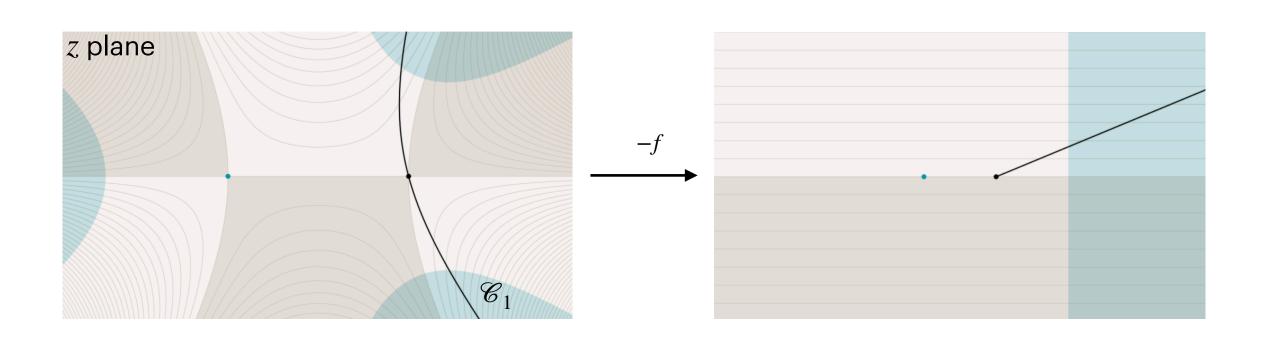
$$\varphi(\mathbf{z},\tau) \sim \tilde{\varphi}_0(\mathbf{z}) \, + \, \frac{\tilde{\varphi}_1(\mathbf{z})}{\tau} \, + \, \frac{\tilde{\varphi}_2(\mathbf{z})}{\tau^2} \, + \ldots \, \text{with } \tilde{\varphi}_j(\mathbf{z}) \text{ being analytic in } \mathbf{z} \in X,$$

a natural contour of integration is a **thimble** \mathscr{C}_p through a critical point p of the potential function f. Indeed, the **thimble integral**

$$F_p(\tau) = \int_{\mathscr{C}_p} e^{-\tau f(\mathbf{z})} \varphi(\mathbf{z}, \tau) d\mathbf{z}$$

is a well-defined analytic function of au

Example: the Airy function $\operatorname{Ai}(\tau) = \int_{\mathscr{C}_1} e^{-\tau \left(\frac{z^3}{3} - z\right)} dz$



Effectiveness of Borel summation for thimble integrals

The asymptotic behaviour of $F_p(\tau)$ for large τ is a **divergent power series**

• If the function $\varphi(\mathbf{z}, \tau)$ does not depend on τ , then the thimble integral $F_p(\tau)$ agrees with the Borel resummation of its asymptotics for large τ [VF-Fenyes 23, Kontsevich-Soibelman 24]

The thimbles represent homology classes relative to $f \colon \mathscr{C}_p \in H_n(X,f)$

• If the function $\varphi(\mathbf{z}, \tau)$ has an **asymptotic divergent series for large** τ that for every fixed $\mathbf{z} \in X$ is **Borel summable**, then the thimble integral $F_p(\tau)$ agrees with the Borel resummation of its asymptotic expansion for large τ [Andersen-VF-Kontsevich-Wheeler in progress]

The thimbles represent homology classes relative to f with coefficients in a sheaf \mathscr{V} : $\mathscr{C}_p \in H_n(X,f;\mathscr{V})$

Observables as exponential integrals with multivalued potential

Often, in mathematical physics, the quantities of interest are of the following form

$$\int e^{-\tau f(\mathbf{z})} \, \varphi(\mathbf{z}, \tau) \, d\mathbf{z}$$

 $f: X \dashrightarrow \mathbb{C}$ is a multivalued function on the complex n-dimensional variety X

 $\varphi(\mathbf{z}, \tau)$ is analytic in $\mathbf{z} \in X$ and $\tau \in \mathbb{C}$

Then one can ask:

What is a **good contour** of integration?

What is the **behaviour for large** τ ?

Thimble integrals with multivalued potential

Assuming

$$\varphi(\mathbf{z},\tau) \sim \tilde{\varphi}_0(\mathbf{z}) \, + \, \frac{\tilde{\varphi}_1(\mathbf{z})}{\tau} \, + \, \frac{\tilde{\varphi}_2(\mathbf{z})}{\tau^2} \, + \ldots \, \text{with } \tilde{\varphi}_j(\mathbf{z}) \text{ being analytic in } \mathbf{z} \in X,$$

a natural contour of integration is a **thimble** \mathscr{C}_p through a critical point p of the holomorphic function $f^* \colon \Sigma \to \mathbb{C}$ from a Riemann surface Σ . Indeed, the **thimble integral**

$$G_p(\tau) = \int_{\mathscr{C}_p} e^{-\tau f^*(\mathbf{z})} \varphi(\mathbf{z}, \tau) d\mathbf{z}$$

is a well-defined **analytic function of** au

Effectiveness of Borel summation for thimble integrals with multivalued potential

The asymptotic behaviour of $G_p(\tau)$ for large τ is a **divergent power series**

• Independently of the asymptotic behaviour of the function $\varphi(\mathbf{z}, \tau)$ for large τ , the thimble integral $G_p(\tau)$ does **not always agree** with the Borel resummation of its asymptotics for large τ

The thimbles represent homology classes with coefficients in a sheaf $\mathscr{V}:\mathscr{C}_p\in H_n(X;\mathscr{V})$

ullet There might be cycles not associated with critical values of the potential f

[Andersen-VF-Kontsevich-Wheeler in progress]

Examples

- Scattering phase in 2D string theory [Alexandrov-Kaushik 25]
- Hemisphere partition functions in GLSM for hypersurfaces in \mathbb{P}^N [Knapp-Romo-Scheidegger 16]
- Exact WKB [Aoki-Kawai-Takei 01]
- Feynman integrals in Baykov representation [Angius-Cacciatori-Massidda 25]
- Fermionic spectral traces from the mirror curve of toric Calabi-Yau 3-folds [Kashaev-Mariño 15]
- Andersen-Kashaev state integrals [Andersen-Kashaev 13]
- •

Examples

- Scattering phase in 2D string theory [Alexandrov-Kaushik 25]
- Hemisphere partition functions in GLSM for hypersurfaces in \mathbb{P}^N [Knapp-Romo-Scheidegger 16]
- Exact WKB [Aoki-Kawai-Takei 01]
- Feynman integrals in Baykov representation [Angius-Cacciatori-Massidda 25]
- Fermionic spectral traces from the mirror curve of toric Calabi-Yau 3-folds [Kashaev-Mariño 15]
- Andersen-Kashaev state integrals [Andersen-Kashaev 13]

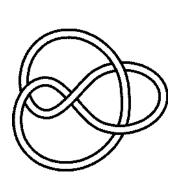
•

Andersen-Kashaev (AK) state integrals of hyperbolic knots

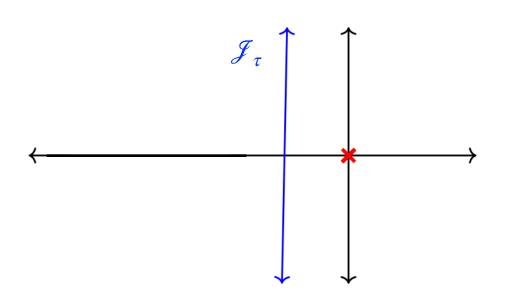
Given a hyperbolic knot K, the **AK state integral** I_K is the partition function of a 3d Teichmüller TQFT, which conjecturally describes $\mathrm{SL}_2(\mathbb{C})$ Chern-Simons theory on $S^3 \setminus K$ and conjecturally for large τ

$$I_K(\tau) \sim \exp(-\operatorname{Vol}(S^3 \setminus K) \tau) \dots$$
 AK Volume conjecture

For the figure-eight knot 4_1 , the AK integral is



$$I_{4_1}(\tau) = e^{\frac{\pi i}{4} - \frac{\pi i}{6\tau} + \frac{\pi i\tau}{6}} \int_{\mathcal{J}_{\tau}} \Phi(z \, \tau; \tau)^2 \, \mathbf{e} \left(\frac{1}{2} z (z\tau + \tau + 1) \right) dz$$



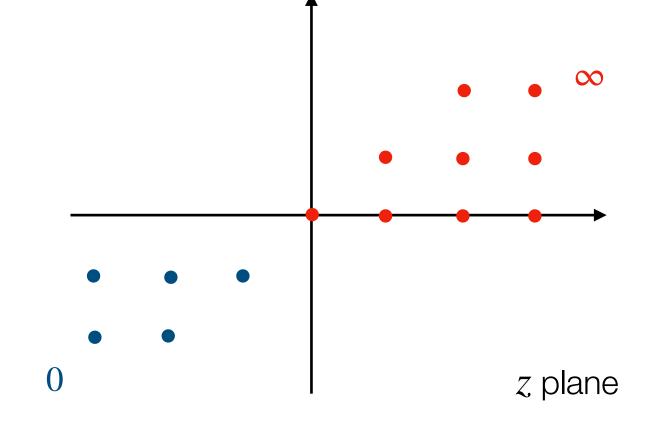
where $\Phi(z;\tau)$ is **Faddeev's quantum dilogarithm** and $\mathbf{e}(x)=\exp(2\pi \mathrm{i} x)$

Faddeev's quantum dilogarithm

Faddeev's quantum dilogarithm is defined as

$$\Phi(z;\tau) = \exp\left(\int_{i\sqrt{\tau}\mathbb{R} + \varepsilon\sqrt{\tau}} \frac{\mathbf{e}((z+1+\tau)w/\tau)}{(\mathbf{e}(w)-1)(\mathbf{e}(w/\tau)-1)} \frac{dw}{w}\right)$$

It is a meromorphic function of $\tau \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$ and $z \in \mathbb{C}$



Its **asymptotic expansion** for large au

$$\tilde{\Psi}(z,\tau) = \mathbf{e} \left(\frac{\pi \mathbf{i}}{4} - \frac{\tau}{24} - \frac{1}{24\tau} - \frac{\tau}{(2\pi \mathbf{i})^2} \text{Li}_2(\mathbf{e}(z)) - \sum_{k=1}^{\infty} (2\pi \mathbf{i})^{k-2} \frac{B_k}{k!} \text{Li}_{2-k}(\mathbf{e}(z)) \tau^{1-k} \right)$$

and $\text{Li}_2(\mathbf{e}(z))$ is multivalued, with branch points at $z \in \mathbb{Z}$ and monodromy $2\pi \mathrm{i} m \log(z) + (2\pi \mathrm{i})^2 n$, with $m,n \in \mathbb{Z}$

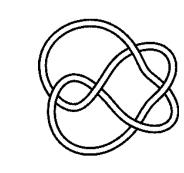
Perturbative invariants of hyperbolic knots

Given a **hyperbolic knot** K, the **perturbative invariants** $\tilde{\Upsilon}_K$ defined by [Dimofte-Garoufalidis 13] and proved to be topological invariants by [Garoufalidis-Strozer-Wheeler 22] are constructed from the data of an ideal triangulation of the knot complement (the so-called Neumann-Zagier data)

For example, for the simplest hyperbolic knots 4_1 and 5_2 the formal invariant $ilde{\Upsilon}_K$ is given as follows

$$\tilde{\Upsilon}_K(\tau) := \int \tilde{\Psi}(z;\tau)^B \exp\left(\frac{A}{2}z^2\tau\right) dz = \int \sum_{k=0}^{\infty} a_k(z) \, \tau^{-k} \, \mathbf{e}\left(V(z)\tau\right),$$

$$\mathbf{4_1}: (A=1, B=2)$$



$$\mathbf{5_2}: (A=2, B=3)$$

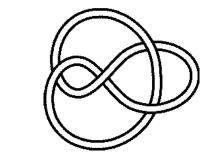
where
$$V(z) = B \frac{\text{Li}_2(\mathbf{e}(z))}{(2\pi i)^2} + \frac{B}{24} + \frac{A}{2}z^2$$

For every critical point $x=\exp(z_{\rm crit})$ of the function V, we get a formal power series $\tilde{\Upsilon}_{K,x}(\tau)$ by doing formal Gaussian integration

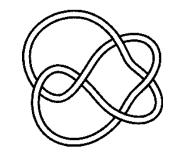
In particular, the critical points x are solutions of $(1-x)^B=x^A$ and correspond to the $\mathrm{SL}_2(\mathbb{C})$ geometric flat connections

P vs NP invariants of hyperbolic knots

For the hyperbolic knots $\mathbf{4}_1$ and $\mathbf{5}_2$ we have two sets of invariants



$A \cdot (A - 1 D - 2)$



$$5_2: (A = 2, B = 3)$$

Perturbative invariants

$$\tilde{\Upsilon}_K(\tau) := \int \tilde{\Psi}(z;\tau)^B \mathbf{e}\left(\frac{A}{2}z^2\tau\right) dz$$

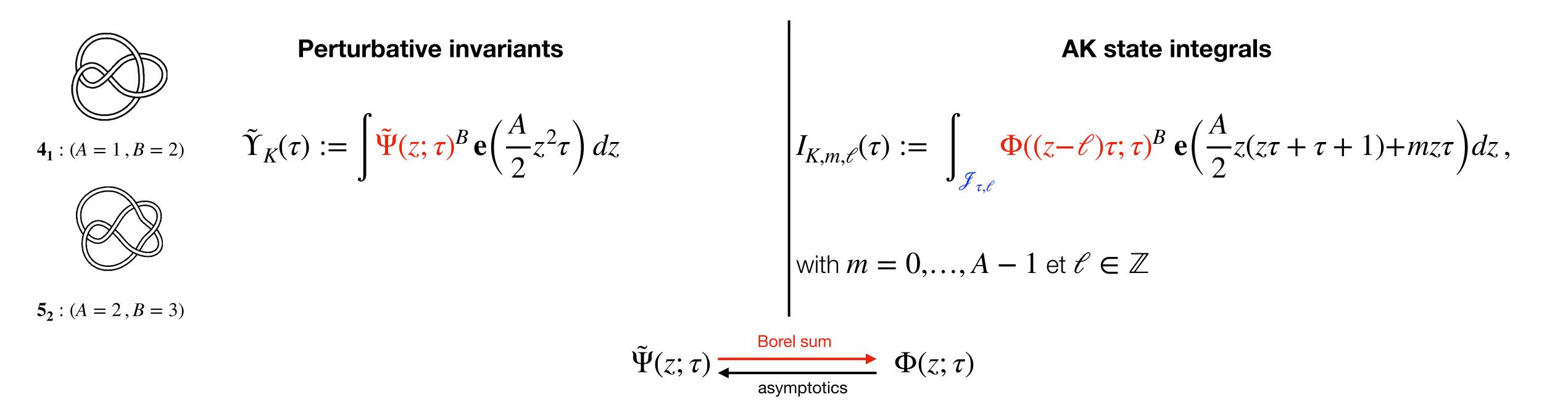
AK state integrals

$$I_{K,m,\ell}(\tau) := \int_{\mathcal{J}_{\tau,\ell}} \Phi((z-\ell)\tau;\tau)^B \mathbf{e}\left(\frac{A}{2}z(z\tau+\tau+1)+mz\tau\right) dz,$$

with
$$m = 0, ..., A - 1$$
 et $\ell \in \mathbb{Z}$

P vs NP invariants of hyperbolic knots

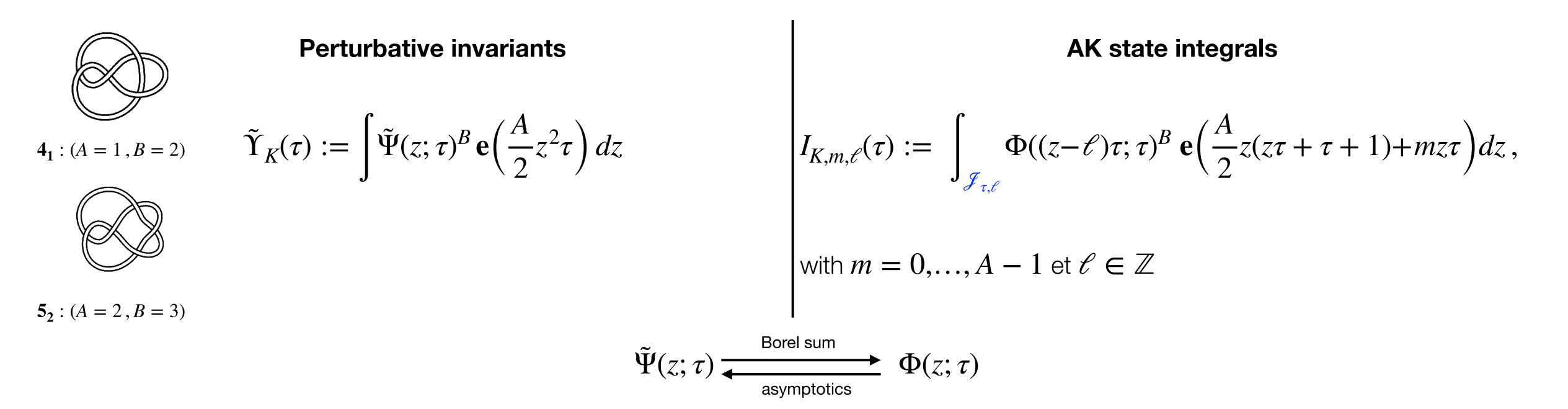
For the hyperbolic knots $\mathbf{4}_1$ and $\mathbf{5}_2$ we have two sets of invariants



Thm [Kashaev-Garoufalidis 20] Faddeev's quantum dilogarithm agrees with the Borel sum of its asymptotic expansion for large au

P vs NP invariants of hyperbolic knots

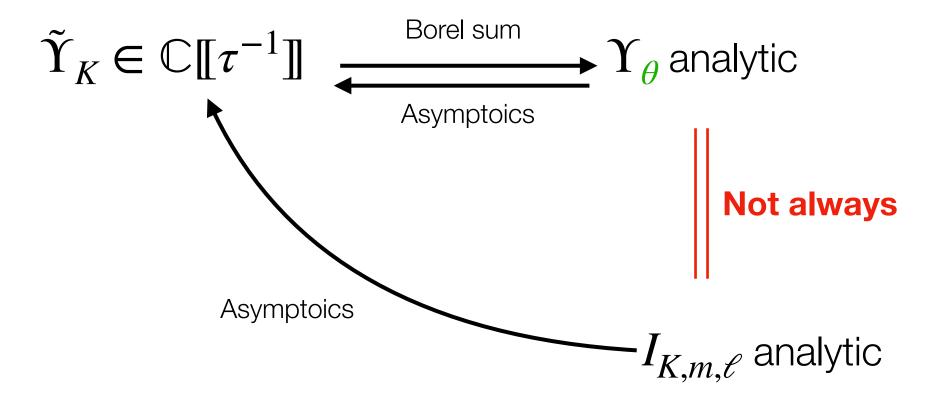
For the hyperbolic knots 4_1 and 5_2 we have two sets of invariants



Conj [Garoufalidis-Gu-Mariño 21] For every critical point x, the Borel resummation of the perturbative invariants $\Upsilon_{K,x}$ is a linear combination of the AK integral I_K and its descendants $I_{K,m,\ell}$

Main result

Thm [VF-Wheeler 24] The conjecture by GGM21 holds for the knots $\mathbf{4}_1$ and $\mathbf{5}_2$



Main result

Thm [VF-Wheeler 24] The conjecture by GGM21 holds for the knots $\mathbf{4}_1$ and $\mathbf{5}_2$

The functions $I_{K,m,\ell}$ are not thimble integrals; indeed, the contours $\mathscr{J}_{\tau,\ell}$ are not of steepest descent for the function

$$V(z) = B \frac{\text{Li}_2(\mathbf{e}(z))}{(2\pi i)^2} + \frac{B}{24} + \frac{A}{2}z(z+1)$$

However, they form a basis for a *relative* homology with coefficients, which contains the class of the thimbles

Hence, we define an **algorithm to decompose the thimble** into state integral contours $\mathcal{F}_{\tau,\ell}$, allowing us to compute the Stokes constants

Main result

Thm [VF-Wheeler 24] The conjecture by GGM21 holds for the knots 4_1 and 5_2

The functions $I_{K,m,\ell}$ are not thimble integrals; indeed, the contours $\mathscr{J}_{\tau,\ell}$ are not of steepest descent for the function

$$V(z) = B \frac{\text{Li}_2(\mathbf{e}(z))}{(2\pi \mathrm{i})^2} + \frac{B}{24} + \frac{A}{2}z(z+1)$$
 V is multivalued

However, they form a basis for a *relative* homology with coefficients, which contains the class of the thimbles

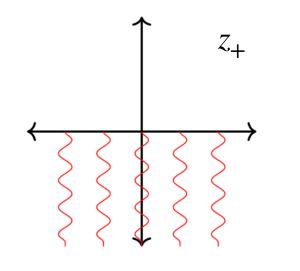
Hence, we define an algorithm to decompose the thimble into state integral contours $\mathcal{J}_{\tau,\ell}$, allowing us to compute the Stokes constants

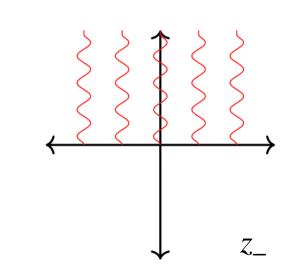
> The system of coefficients is given by the **Stokes phenomenon** of the Faddeev's dilogarithm

A homology theory relative to the dilogarithm

The Riemann surface of V

Fix a branch of $\mathrm{Li}_2(\mathbf{e}(z))$ and restrict the function V to the Riemann surface Σ





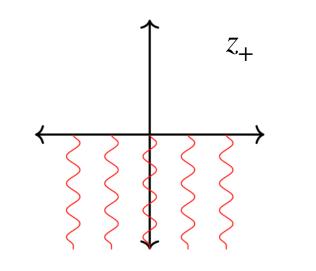
$$V(z_{+}, \boldsymbol{m}, n) = B \frac{\text{Li}_{2}(\mathbf{e}(z_{+}))}{(2\pi i)^{2}} + \frac{B}{24} + \frac{A}{2}z_{+}^{2} + \boldsymbol{m}z_{+} + n,$$

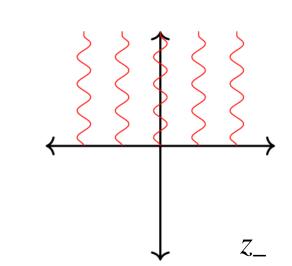
$$\Lambda(z_{-}, m, n) = B \frac{\text{Li}_{2}(\mathbf{e}(-z_{-}))}{-(2\pi i)^{2}} + \frac{B}{12} - \frac{B}{2} \left(z_{-} - \frac{1}{2}\right)^{2} + \frac{A}{2}z_{-}^{2} + mz_{-} + n,$$

where m = 0,...,A-1 and $n \in \mathbb{Z}$

The Riemann surface of V

Fix a branch of $\mathrm{Li}_2(\mathbf{e}(z))$ and restrict the function V to the Riemann surface Σ





$$V(z_{+}, m) = B \frac{\text{Li}_{2}(\mathbf{e}(z_{+}))}{(2\pi i)^{2}} + \frac{B}{24} + \frac{A}{2}z_{+}^{2} + mz_{+},$$

$$\Lambda(z_{-}, m) = B \frac{\text{Li}_{2}(\mathbf{e}(-z_{-}))}{-(2\pi i)^{2}} + \frac{B}{12} - \frac{B}{2} \left(z_{-} - \frac{1}{2}\right)^{2} + \frac{A}{2}z_{-}^{2} + mz_{-},$$

where m = 0,...,A - 1

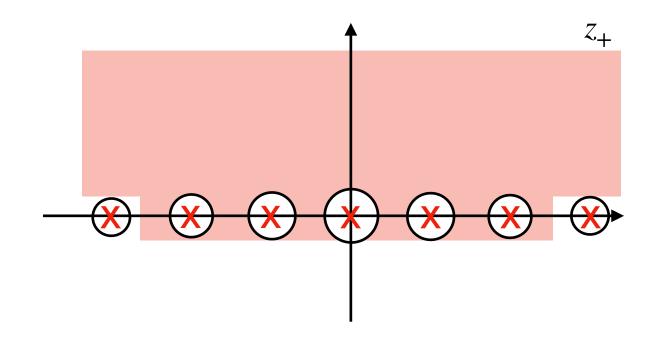
Critical points of the function $V: \Sigma \to \mathbb{C}/\mathbb{Z}$ are solutions of an algebraic equation $x^A = (1-x)^B$ and $x = \mathbf{e}(z)$

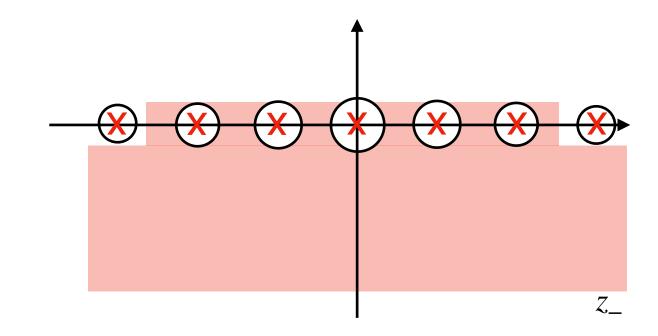
A relative homology for $V \colon \Sigma \to \mathbb{C}/\mathbb{Z}$

For z large enough, the function V (resp. Λ) is dominated by the **Gaussian term** $f_+(z) = \frac{A}{2}z^2$ (resp. $f_-(z) = \frac{(A-B)}{2}z^2$)

For generic directions $\theta \in [0,2\pi)$, the steepest descent contours of V (resp. Λ) are ϵ -bounded away from the branch points

Define the surface $X_{M,\epsilon} \subset \Sigma$ by gluing different coordinate charts



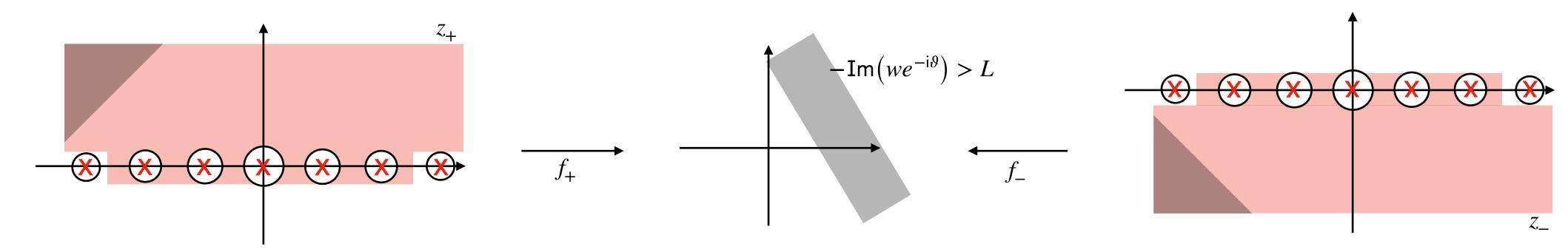


A relative homology for $V \colon \Sigma \to \mathbb{C}/\mathbb{Z}$

For z large enough, the function V (resp. Λ) is dominated by the **Gaussian term** $f_+(z) = \frac{A}{2}z^2$ (resp. $f_-(z) = \frac{(A-B)}{2}z^2$)

For generic directions $\theta \in [0,2\pi)$, the steepest descent contours of V (resp. Λ) are ϵ -bounded away from the branch points

Define the surface $X_{M,\epsilon} \subset \Sigma$ by gluing different coordinate charts



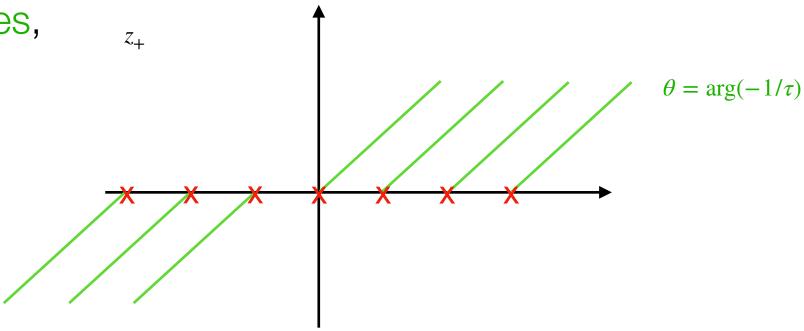
Proposition [VF-Wheeler 24] The relative homology $H_1(X_{M,\epsilon},f)$ is finite-dimensional, and a basis is given by the state integrals contours $\mathcal{J}_{\ell,\tau}$ with $\arg(\tau)=\vartheta$

The system of coefficients

The integral defining the formal series $\tilde{\Upsilon}_K$ depends on au both the exponential term ${f e}(au\,V(z))$ and the 1-form

$$\exp\left(-\text{Li}_{1}(\mathbf{e}(z)) - \sum_{k=2}^{\infty} (2\pi i)^{k-1} \frac{B_{k}}{k!} \text{Li}_{2-k}(\mathbf{e}(z)) \tau^{1-k}\right) dz \in \Omega^{1}(\Sigma)[[\tau^{-1}]]$$

The Faddeev's quantum dilogarithm $\Phi(z;\tau)$ jumps crossing these green lines,



Build a sheaf $\mathcal{V} \to \Sigma$ that includes these contributions (sheaf of resurgent structure), and define the sheaf homology $H_1(\Sigma, \mathcal{V})$ [Andersen-VF-Kontsevich-Wheeler in progress]

Conclusions

Conclusions

Perturbative topological invariants of the hyperbolic knots 4_1 and 5_2 are described by **one-dimensional** integrals $ilde{\Upsilon}_{K,x}$

- Their Borel sum $\Upsilon_{K,x,\vartheta}$ is a **thimble integral** for the **multivalued function** V
- The thimbles give classes in a relative homology theory with coefficients
- The Stokes jumps of Faddeev's quantum dilogarithm define the sheaf of coefficients
- A **basis** for the homology is given by AK state integrals and their descendants

- Extend the result to higher-dimensional integrals to include more examples of hyperbolic knots and beyond the dilogarithm function [Andersen-VF-Kontsevich-Wheeler in progress]
- Application to Feynman integrals for the computation of master integrals

Conclusions

Perturbative topological invariants of the hyperbolic knots 4_1 and 5_2 are described by **one-dimensional** integrals $ilde{\Upsilon}_{K,x}$

- Their Borel sum $\Upsilon_{K,x,\vartheta}$ is a **thimble integral** for the **multivalued function** V
- The thimbles give classes in a relative homology theory with coefficients
- The Stokes jumps of Faddeev's quantum dilogarithm define the sheaf of coefficients
- A **basis** for the homology is given by AK state integrals and their descendants

- Extend the result to higher-dimensional integrals to include more examples of hyperbolic knots and beyond the dilogarithm function [Andersen-VF-Kontsevich-Wheeler in progress]
- Application to Feynman integrals and computation of master integrals

Thank you for your attention