26–28 nov. 2025
LPC Caen and GANIL
Fuseau horaire Europe/Paris

Understanding nuclear charge radii with machine learning

27 nov. 2025, 11:25
20m
Maison d'hôtes (GANIL)

Maison d'hôtes

GANIL

Boulevard Henri Becquerel, 14000 Caen

Orateurs

Bhoomika Maheshwari (GANIL)M. Pieter Van Isacker (GANIL)

Description

We present a hybrid machine-learning framework that combines high-accuracy numerical regression with symbolic regression to model and interpret nuclear charge radii. Using Light Gradient Boosting and Gaussian Process Regression with rigorous cross-validation, the method reproduces experimental trends across the nuclear chart and distills them into simple analytical expressions. These formulas naturally recover liquid-drop–like dependencies and reveal new correlations from pairing and binding energies, demonstrating data-driven discovery of physical laws in nuclear structure.

Auteurs

Documents de présentation