### Conveners

#### Nuclear structure, short-range correlations, and clustering from direct reactions

- Marek Ploszajczak (GANIL)

#### Nuclear structure, short-range correlations, and clustering from direct reactions

- Pawel Danielewicz (Michigan State University)

#### Nuclear structure, short-range correlations, and clustering from direct reactions

- Marine Vandebrouck (CEA Saclay DPhN)

Projectile fragmentation at several hundred MeV/nucleon has been crucial to exploring the world of nuclear physics.

One of the reactions in the projectile fragmentation is the charge-changing reaction cross sections (CCCS), which are the total removal probabilities

of one or more protons during the collisions with target nuclei. The reactions have been used to determine the 𝑟𝑚𝑠 proton radii...

The pygmy dipole resonance (PDR) is a vibrational mode described as the oscillation of a neutron skin against a core symmetric in number of protons and neutrons. The PDR has been the subject of numerous studies, both experimental and theoretical [1,2,3]. Indeed, the study of the PDR has been and still is of great interest since it allows to constrain the symmetry energy, an important...

The nuclear energy density functional (NEDF) theory represents a unified approach to studying properties of nuclei along the nuclide map and the equation of state of nuclear matter. Significant progress has been made in constructing NEDFs using both relativistic and non-relativistic frameworks. NEDFs have primarily been parameterized using experimental data related to ground-state properties...

Quantum phase transitions (QPTs) in atomic nuclei are drastic structural changes in the spectrum that are identified as either shape evolution or crossing shell model configurations in a chain of nuclei as a function of nucleon number. This phenomenon is frequently investigated in nuclear physics, both theoretically and experimentally, where many rare isotope beam facilities investigate a...

Loosely bound nuclei are currently at the center of interest in low-energy nuclear physics. The deeper understanding of their properties provided by the shell model for open quantum systems changes the comprehension of many phenomena and offers new horizons for spectroscopic studies of nuclei from the driplines to the valley of $\beta$-stability, for states in the vicinity and above the first...

N.S. Martorana $^1$, G. Cardella$^1$, E.G. Lanza$^1$, A. Barbon$^{1,2}$, A. Castoldi$^3$, G. D’Agata$^{1,2}$, E. De Filippo $^1$, E. Geraci$^{1,2}$, B. Gnoffo$^{1,2}$, C. Guazzoni$^{3}$, C. Maiolino$^{4}$, E.V. Pagano$^{4}$, M. Papa$^{1}$, S. Pirrone$^{1}$, G. Politi$^{1,2}$, L. Quattrocchi$^{1,5}$, F. Risitano$^{1,5}$, F. Rizzo$^{2,4,6}$, P. Russotto$^{4}$, M. Trimarchi$^{1,5}$, C. Zagami...

The isospin symmetry breaking terms of the nuclear interaction is a small part of the whole, while it gives important contributions to some physical observables of nuclear properties. For instance, we showed that the isospin symmetry breaking terms affect the estimation of the slope parameter of the symmetry energy using the neutron-skin thickness and the charge radii difference of the mirror...

The neutron skin (NS) is a phenomenon of an increased neutron to proton density ratio at the nuclear periphery. It is a prominent probe of the nuclear equation of state, connecting nuclear physics and astrophysics. The PREX experiment was the first to determine the NS in $^{208}$Pb through parity-violating electron scattering but had great uncertainty in the resulting NS thickness. The Mainz...

The recent PREX-2 and CREX data on the model-independent extraction of the charge-weak form factor difference ΔF in Pb208 and Ca48 challenge modern nuclear energy density functionals (EDFs) as well as our present understanding on the neutron skin and nuclear symmetry energy. Within the Skyrme-like EDFs, we demonstrate that the isovector spin-orbit interaction can strongly change the ΔF in Ca48...

We investigate the size changing of $2n$, $2p$, and $2d$ during their emission from $^6$He, $^6$Be, $^6$Li, and $^{18}$F in the microscopic calculation framework. The average size of the subsystem in the nucleus is defined with the two-dimensional reduced width amplitude (RWA). The results show that all of these nucleon pairs, including the boundary deuteron($2d$) pair, will happen the size...