Sep 9 – 14, 2024
Caen
Europe/Paris timezone

Intertwined quantum phase transitions in even-even and odd-mass nuclei

Sep 9, 2024, 12:20 PM
20m
GANIL Guest House (Caen)

GANIL Guest House

Caen

Speaker

Dr Noam Gavrielov (Hebrew University of Jerusalem)

Description

Quantum phase transitions (QPTs) in atomic nuclei are drastic structural changes in the spectrum that are identified as either shape evolution or crossing shell model configurations in a chain of nuclei as a function of nucleon number. This phenomenon is frequently investigated in nuclear physics, both theoretically and experimentally, where many rare isotope beam facilities investigate a plethora of nuclei.
In this talk I will discuss my attempt to understand such phenomenon using algebraic frameworks - the interacting boson model with configuration mixing for even-even nuclei, and the new interacting boson-fermion model with configuration mixing for odd-mass nuclei. I will present my work on the chain of zirconium isotopes ($Z = 40$) with mass numbers A = 92-110 and the chain of niobium isotopes (Z = 41) with mass numbers A = 93-103. The spectrum of the two chains discloses the manifestation of intertwined quantum phase transitions (IQPTs). IQPTs represent a situation where two types of QPTs occur in the same chain of nuclei. One is a crossing of two configurations in the ground state, and another is a shape evolution within each configuration. The occurrence of IQPTs in both chains of isotopes can set path for new investigations of this phenomenon in other chains, both even-even and odd-mass.

Primary author

Dr Noam Gavrielov (Hebrew University of Jerusalem)

Presentation materials