27 novembre 2023 à 1 décembre 2023
Fuseau horaire Europe/Paris

Precision-Machine Learning for the Matrix Element Method

28 nov. 2023, 16:30
25m
Simulation-Based Inference Simulation Based Inference

Orateur

Nathan Huetsch (Heidelberg University)

Description

The matrix element method is the LHC inference method of choice for limited statistics.
We present a dedicated machine learning framework, based on efficient phase-space
integration, a learned acceptance and transfer function. It is based on a choice of INN
and diffusion networks, and a transformer to solve jet combinatorics. Bayesian networks allow us to capture network uncertainties, bootstrapping allows us to estimate integration uncertainties. We showcase this setup for the CP-phase of the top Yukawa coupling in associated Higgs and single-top production.
Paper: arXiv:2310.07752

Auteurs principaux

Anja Butter (LPNHE) Nathan Huetsch (Heidelberg University) Ramon Winterhalder (UC Louvain) Theo Heimel (Heidelberg University) Tilman Plehn (Heidelberg University)

Documents de présentation