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Controlling uncertainties in generative models / 1

Using an adversary trained on a control sample to control system-
atic errors
Auteur: Gordon Watts1

1 University of Washington

Auteur correspondant gwatts@uw.edu

Machine Learning improved the sensitivity in searches for massive long-lived neutral particles decay-
ing in the Calorimeter by over 30%. This was only after supressing a large increase in the systeamtic
errors caused by the method. The largest contribution to this improvement in senstivity is the use
of a Recurrant Neural Network that separates signal from standard QCD multijet background and
Beam Induced Background. This classifier uses low-level data like realtive calorimeter cluster loca-
tions, tracks, and muon segments. We exploit the calorimeter cell energy deposit time as a powerful
handle to reject beam induced background, which is poorly simulated by the ATLAS experiment’s
Monte Carlo simulation package. In addition, the beam induced background training dataset can
only be drawn from data. Thus the RNN training set contains a mix of poorly simulated Monte
Carlo data, and LHC collision data. A control dataset was used to train an adversary, along with
signal and background samples for the RNN, simultaniously. The adversary is trained to tell the
difference between collision data and simulated data, and its success is part of the main network’s
loss function. This dramatically reduced the systematic errors due to Monte Carlo mis-modeling.
This presentatino will discuss the network design, how it was modified when the problem(s) were
discovered, and its performance.

Unfolding (de-biasing) / 2

An unfoldingmethod based on conditional Invertible Neural Net-
works (cINN) using iterative training
Auteurs: Anja Butter1; Bogdan MALAESCU2; Mathias Josef Backes3; Monica Dunford3

1 LPNHE
2 LPNHE, Paris, FRANCE
3 Kirchhoff Institut für Physik

Auteurs correspondants: malaescu@in2p3.fr, monica.dunford@kip.uni-heidelberg.de, anja.butter@lpnhe.in2p3.fr,
mathias.josef.backes@cern.ch

The unfolding of detector effects is crucial for the comparison of data to theory predictions. While
traditional methods are limited to representing the data in a low number of dimensions, machine
learning has enabled new unfolding techniques while retaining the full dimensionality. Generative
networks like invertible neural networks (INN) enable a probabilistic unfolding, which maps indi-
vidual data events to their corresponding unfolded probability distribution. The accuracy of such
methods is however limited by how well the experimental data is modeled by the simulated training
samples.
We introduce the iterative conditional INN (IcINN) for unfolding that adjusts for deviations between
simulated training samples and data. The IcINN unfolding is first validated on toy data and then ap-
plied to pseudo-data for the pp → Zγγ process. Additionally, we validate the probabilistic unfolding
with a novel approach using the traditional transfer matrix-based methods.

The main results of this project have been published in a paper (arXiv:2212.08674: https://arxiv.org/abs/2212.08674).
A second paper with a stronger focus on the probabilistic unfolding will be published prior to the
conference.
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Unfolding (de-biasing) / 3

Can contrastive learning de-bias my model?
Auteurs: Alex Wilkinson1; Radi Radev2

1 UCL / Fermilab
2 CERN

Auteurs correspondants: radi.radev@cern.ch, alexander.wilkinson.20@ucl.ac.uk

Deep learning models have become ubiquitous in high-energy physics and have been successfully
applied to a wide variety of tasks. Models for reconstruction are usually trained from scratch on
a nominal set of simulation parameters, not taking into account variations of detector systematic
uncertainties.

Following advances in contrastive learning, we present a method of pre-training a general model,
that is de-biased from detector systematic uncertainties. During the pre-training phase, the model
learns a representation that is invariant to simulation shifts and symmetries, by contrasting between
different simulated views of the same event. Freezing the weights of the contrastive model, the
extracted representation is general enough that it can be used for a variety of prediction tasks. We
showcase the flexibility and efficacy of this method by training with sparse 3D neutrino liquid argon
time projection chamber (LArTPC) data.

Opening session, Uncertainty Quantification / 4

Metrics for Uncertainty-Aware ML Methods
Auteurs: Benjamin Nachman1; Sascha Diefenbacher1; Wahid Bhimji1

1 Lawrence Berkeley National Laboratory

Auteurs correspondants: wbhimji@lbl.gov, sdiefenbacher@lbl.gov, bpnachman@lbl.gov

Machine learning methods have managed to provide significant improvements to data analysis in
a multitude of scientific fields. However, as ML finds more and more applications in science, the
challenge of quantifying machine learning uncertainties moves into the forefront. This is especially
notable in High Energy Physics, where high-precision measurements require precise knowledge of
uncertainties. Moreover, systematic uncertainties, such as detector effects and calibration factors,
are common occurrences in HEP.

This leads to a requirement for methods and approaches that are not only accurate and precise in
the presence of such, imperfectly understood systematic uncertainties, but can also provide accu-
rate estimates of the uncertainty in their prediction. Several methods have been proposed for ML
uncertainty quantification, however measuring and comparing the performance of these methods is
highly non-trivial.

In this talk, we present several metrics for uncertainty quantification metrics, compare their distinct
advantages, and benchmark them with example uncertainty quantification challenges.

Explainable AI / 5

Advancing Explainable AI: Testing and Enhancing Techniques
Across Multidisciplinary Use-Cases
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Auteurs: Andrea Ciardiello1; Cecilia Voena1; Corneliu Balan2; Cristiano Sebastiani3; Joseph Carmignani3; Kalina
Dimitrova4; Maurizio Mattia5; Monica D’Onofrio3; Simone Melchionna6; Simone Scardapane7; Stefano Giagu8;
Venelin Kozhuharov9

1 Sapienza Università di Roma, Roma, Italy
2 Polytechnic Institute Bucharest Romania
3 University of Liverpool
4 Sofia University “St. Kliment Ohridski”
5 Istituto Superiore di Sanità - Roma, Italy
6 MedLea s.r.l.s.
7 Sapienza University of Rome, Roma, Italy
8 Sapienza Università di Roma, INFN Roma, Roma Italy
9 Sofia University ”St. Kl. Ohridski”

Auteurs correspondants: cristiano.sebastiani@cern.ch, corneliu.balan@upb.ro, kalina@phys.uni-sofia.bg, venelin.kozhuharov@cern.ch,
simone.melchionna@gmail.com, andrea.ciardiello@uniroma1.it, onofrio@liverpool.ac.uk, joecarmignani@gmail.com,
maurizio.mattia@iss.it, stefano.giagu@uniroma1.it, cecilia.voena@uniroma1.it, simone.scardapane@uniroma1.it

Developing and testing methodologies for enhancing the transparency, interpretability, and explain-
ability of AI algorithms is a pressing challenge for the application of artificial intelligence methods
in fundamental physics. The Multi-disciplinary Use Cases for Convergent new Approaches to AI ex-
plainability (MUCCA) project is an innovative project that aims to address this challenge by bringing
together researchers from diverse fields, each contributing complementary skills essential for com-
prehending AI algorithm behavior. The project centers around the investigation of a wide array of
multidisciplinary use-cases, where explainable AI can play a pivotal role.  In our presentation we
illustrate the MUCCA project in general, to then verticalize with respect to our ongoing research
in the field of high energy physics.  We showcase its application in both high-energy physics exper-
iment data analysis and its use in detector and real-time systems. Specifically, we delve into our
exploration of various explainability methods rooted in different approaches and evaluate their ef-
fectiveness across the diverse use-cases. The outcome of our work yields a collection of potentially
comprehensible and human-friendly explanations for the predictions made by our models. We con-
clude by highlighting limitations of existing xAI models for high-energy physics, and brainstorming
ideas on how to build novel, explainable-by-design models for accelerating scientific research with
AI.

Simulation Based Inference / 6

Precision-Machine Learning for theMatrix ElementMethod
Auteurs: Anja Butter1; Nathan Huetsch2; Ramon Winterhalder3; Theo Heimel2; Tilman Plehn2

1 LPNHE
2 Heidelberg University
3 UC Louvain

Auteurs correspondants: tilman.plehn@cern.ch, ramon.winterhalder@uclouvain.be, heimel@thphys.uni-heidelberg.de,
anja.butter@lpnhe.in2p3.fr, huetsch@thphys.uni-heidelberg.de

The matrix element method is the LHC inference method of choice for limited statistics.
We present a dedicated machine learning framework, based on efficient phase-space
integration, a learned acceptance and transfer function. It is based on a choice of INN
and diffusion networks, and a transformer to solve jet combinatorics. Bayesian networks allow us
to capture network uncertainties, bootstrapping allows us to estimate integration uncertainties. We
showcase this setup for the CP-phase of the top Yukawa coupling in associated Higgs and single-top
production.
Paper: arXiv:2310.07752
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Controlling uncertainties in generative models / 7

Uncertainty-aware diffusion models for LHC Event Generation

Auteurs: Anja Butter1; Jonas Spinner2; Nathan Huetsch2; Peter Sorrenson3; Sofia Palacios Schweitzer4; Tilman
Plehn2

1 LPNHE
2 Heidelberg University
3 IWR Heidelberg
4 ITP, Heidelberg University

Auteurs correspondants: anja.butter@lpnhe.in2p3.fr, jonas.spinner@stud.uni-heidelberg.de, huetsch@thphys.uni-
heidelberg.de, palacios@thphys.uni-heidelberg.de, tilman.plehn@cern.ch

Given the recent success of diffusion models in image generation, we study their applicability to
generating LHC phase space distributions. We find that they achieve percent level precision com-
parable to INNs. Training uncertainties are quantified by developing Bayesian versions to further
enhance the interpretability of our results. In this talk, diffusion models are introduced and discussed
followed by a presentation of our findings.

Frugal Unmixing, Reusing, and Sampling / 8

Publication and reuse of ML models in LHC analyses
Auteur: Sabine Kraml1

1 LPSC Grenoble, CNRS/IN2P3

Auteur correspondant sabine.kraml@lpsc.in2p3.fr

With the increasing usage of machine learning in high energy physics analyses, the publication of
the learned models in a reusable form has become a crucial question for analysis preservation and
reuse. In turn, a lack of appropriate ML design and publication makes reinterpretation of analyses
in terms of physics scenarios beyond those considered in the original experimental paper seriously
difficult if not impossible. I will discuss recent efforts towards the preservation and reuse of ML-
based LHC analyses together with guidelines for reusable ML models, which originated from the
LHC Reinterpretation Forum and the 2023 PhysTeV workshop in Les Houches.

Controlling uncertainties in generative models / 9

Data driven background estimation in HEP using generative ad-
versarial networks
Auteurs: Fabrice Couderc1; Julie Malcles2; Mehmet Ozgur Sahin3; Victor Lohezic4

1 CEA
2 IRFU, CEA-Saclay
3 Irfu, CEA Paris-Saclay
4 IRFU (CEA) / Université Paris-Saclay

Page 4



Artificial Intelligence and the Uncertainty challenge in Fundamental Ph … / Recueil des résumés

Auteurs correspondants: victor.lohezic@universite-paris-saclay.fr, fabrice.couderc@cea.fr, julie.malcles@cea.fr,
ozgur.sahin@cern.ch

Data-driven techniques are indispensable for addressing the limitations of Monte Carlo (MC) simu-
lations in High Energy Physics experiments, such as insufficient statistics and process mismodeling.
Accurate representation of background processes is essential for achieving optimal measurement
sensitivity. Traditional approaches often involve the selection of a control region to model the back-
ground, but this can introduce biases in the distribution of certain physics observables, and hence
rendering them unusable in subsequent analyses. To overcome this issue, we introduced a novel
method that generates physics objects that are both compatible with the region of interest and accu-
rately represent correlations with other event properties.
To achieve this we employ conditional generative adversarial networks (GANs), leveraging their
proven efficacy in various machine learning tasks. The method is illustrated by generating a new
misidentified photon for the gamma+jets background of the H → γγ analysis on the CMS Open
Data simulated samples. We demonstrate that the GAN is able to generate a coherent object within
the region of interest and still retains correlations with other observables within the rest of the
event.

Simulation Based Inference / 10

Swyft: Directmarginal inference for large simulationmodels
Auteur: Christoph Weniger1

1 University of Amsterdam

Auteur correspondant c.weniger@uva.nl

As cosmology and astrophysics data advance, there is a growing demand for more detailed physi-
cal and instrumental simulation models with a multitude of uncertain parameters. Estimating the
full joined posterior often becomes computationally prohibitive. Swyft is a deep learning python
module that leverages the unique property of simulation-based inference to perform direct marginal
inference. It enables to efficiently estimate individual parameter posteriors, perform marginal im-
age reconstruction tasks, or do Bayesian model comparison, without access the joined posterior. I
will provide a brief overview of the library and underlying algorithms, and present applications in
astroparticle physics and cosmology.

Controlling uncertainties in generative models / 11

Generativemodeling in genomics and a perspective onuncertainty
quantification
Auteur: Burak Yelmen1

1 University of Tartu

Auteur correspondant burak.yelmen@ut.ee

In recent years, generative modeling has gained substantial momentum in genomics research thanks
to increased availability of computational resources and development of deep generative models
(DGMs) over the past decade. DGMs can learn the complex structure of genomic data and can
be utilized for a variety of tasks such as generation of realistic artificial genomes, dimensionality
reduction and prediction, with unsupervised, semi-supervised or supervised learning schemes. In
this talk, I will present a background on generative models in genomics, discuss our recent work on
the generation of artificial genomic data, and provide my perspective on approaches for uncertainty
quantification.
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Architectures / 12

Efficient Sampling from Bayesian Network Posteriors for Opti-
mal Uncertainties
Auteurs: Gregor Kasieczka1; Mathias Trabs2; Sebastian Bieringer3

1 Hamburg University
2 Karlsruhe Institute of Technology
3 Hamburg University, Institute for experimental physics

Auteur correspondant sebastian.bieringer@desy.de

Bayesian neural networks are a key technique when including uncertainty predictions into neural
network analysis, be it in classification, regression or generation. Although being an essential build-
ing block for classical Bayesian techniques, Markov Chain Monte Carlo methods are seldomly used
to sample Bayesian neural network weight posteriors due to slow convergence rates in high dimen-
sional parameter spaces. Metropolis-Hastings corrected chains exhibit two major issues: using a
stochastic Metropolis-Hastings term and bad acceptance rates. We present solutions to both prob-
lems in form of a correction term to the loss objective and novel proposal distributions based on the
Adam-optimizer. The combined algorithm shows fast convergence and good uncertainty estimation
for physics use cases without dramatically increasing the cost of computation over gradient descent
based optimization.

Opening session, Uncertainty Quantification / 13

UncertaintyQuantification inNeuralNetworks: Methods andCon-
siderations
Auteur: Laurens Sluijterman1

1 Radboud University

Auteur correspondant l.sluijterman@math.ru.nl

In this talk, we delve into the complexities of uncertainty quantification for neural networks. Model
predictions inherently come with uncertainties that arise from several factors: stochastic outcomes,
the randomness of training data samples, and the inherent variability of the training process itself.
Through the lens of a regression problem, we will unpack these factors and provide a pragmatic
framework to understand and quantify uncertainty effectively. Furthermore, we will discuss various
considerations and pitfalls associated with using popular approaches such as Monte Carlo dropout
and Deep Ensembles.

Simulation Based Inference / 14

Optimal dataset-wide inference in the presence of systematic un-
certainties
Auteurs: Chris Pollard1; Lukas Heinrich2; Philipp Windischhofer3; Siddharth Mishra-Sharma4

1 University of Warwick
2 Technische Universität München
3 University of Chicago
4 Massachusetts Institute of Technology
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Auteurs correspondants: chris.pollard@cern.ch, smsharma@mit.edu, philipp.windischhofer@cern.ch, lukas.heinrich@cern.ch

Real-world datasets often comprise sets of observations that collectively constrain the parameters of
an underlying model of interest. Such models typically have a hierarchical structure, where “local”
parameters impact individual observations and “global” parameters influence the entire dataset. In
this talk we introduce Bayesian and Frequentist approaches for optimal dataset-wide probabilistic
inference in cases where the likelihood is intractable, but simulations can be realized via forward
modeling. We construct neural estimators for the likelihood(-ratio) or posterior and show that ex-
plicitly accounting for the model’s hierarchical structure can lead to tighter parameter constraints.
We illustrate our methods using case studies from particle physics and astrophysics.

Based on: https://arxiv.org/abs/2306.12584

Benchmark, Datasets and Challenges / 15

Exploring Data Challenges and Leveraging Codabench: A Practi-
cal Journey with unsupervised New Physics detection at 40 MHz

Auteur: Ekaterina Govorkova1

1 MIT

Auteur correspondant ekaterina.govorkova@cern.ch

This talk delves into our team’s experience in orchestrating an unsupervised New Physics detection
at 40 MHz, shedding light on the intricacies of design, implementation, and lessons learned.
We challenged the community to develop algorithms for detecting New Physics by reformulating
the problem as an out-of-distribution detection task.
We provided datasets with four-vectors of the highest-momentum jets, electrons, and muons pro-
duced in a LHC collision event, together with the missing transverse energy, while the goal was to
find a-priori unknown and rare New Physics hidden in a data sample dominated by ordinary Stan-
dard Model processes, using anomaly detection approaches.
We share insights gained from the past, highlighting the challenges faced and the innovative solu-
tions employed to foster engaging and impactful competitions.
Furthermore, the presentation shifts focus to our recent exploration of Codabench as a versatile plat-
form for orchestrating data challenges.
We share our firsthand experiences with Codabench, emphasizing its capabilities in simplifying the
challenge setup process, fostering collaboration among participants, and streamlining the evaluation
workflow.

Benchmark, Datasets and Challenges / 16

Neuroscience ML challenges using CodaBench: Decoding multi-
limb trajectories from two-photon calcium imaging
Auteurs: Maria Dadarlat1; Megan Lipton1; Seungbin Park1; Yuan-Tang Chou2

1 Purdue University
2 University of Washington, Seattle (US)

Auteurs correspondants: liptonm@purdue.edu, mdadarla@purdue.edu, yuan-tang.chou@cern.ch, park1377@purdue.edu

In this talk, we present the ML challenge using CodaBench for the Neuroscience dataset. The
ML challenge is hosted by the Accelerated AI Algorithms for Data-Driven Discovery (A3D3) In-
stitute.
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Neural decoding is the process of predicting behavior from brain signals, which is crucial for gaining
insights into the functions of various brain regions and for advancing technology, such as the brain-
computer interface, to aid individuals suffering from neurological injuries and diseases. Two-photon
calcium imaging is a promising technique for neural decoding to record the activity of thousands
of neurons in a single-cell resolution. Dadarlatlab at Purdue University organized the dataset of
neural signals recorded by two-photon calcium imaging and running trajectories of mice. Decoding
two-photon calcium imaging data has been challenging because the calcium signal indirectly and
non-linearly represents action potential, has slow kinematics from a long decay time of calcium
fluorescence, and has low sampling rates during imaging compared to natural behavior. Artificial
intelligence can be a promising solution to overcome these challenges.

17

A Data-centric AI based diagnosis method using unsupervised la-
beling and MLP
Auteur: mohsen zargarani1

1 CentraleSupelec, Institute GEEPs

Auteur correspondant mohsen.zargarani@centralesupelec.fr

The quality of Input data has a profound impact in fault diagnosis. To construct high quality datasets
for required diagnosis performance, it is vital to eliminate ambiguities in featured data. An example
in our case study is the undesirable similarity between I-V curves in both open-circuit fault and par-
tial shading fault. In this study, data-centric AI architecture is shaped on both I-V curve training data
development and fault data maintenance. The diagnosis is based on an automated cluster-then-label
algorithm. In the training data development step, all featured data are clustered to study the hidden
meaning of each cluster representative. After assigning an initial label to each cluster, a data quality
valuation runs and the assessment verifies representatives to detect qualified data with distinct fault
labels. According to the assessment results, the iterative data maintenance process performs the data
quality improvement. The objective of quality improvement is to eliminate the cluster ambiguities
in a more smart and concise way. Our preliminary results of our data-centric AI-based diagnosis
illustrate higher understandability than other state of art unsupervised fault diagnosis.

Frugal Unmixing, Reusing, and Sampling / 18

Data frugalmachine learning approaches for unmixing problems
in Physics
Auteur: Jerome Bobin1

1 CEA

Auteur correspondant jerome.bobin@cea.fr

Unmixing problems are ubiquitous in Physics, ranging from spectral unmixing to unsupervised com-
ponent separation, where elementary physical components need to be separated out from intricate
observed mixtures. These problems are generally ill-posed, which mandates the design of effective
regularisation to better distinguish between the sought-after components. While ML-based methods
are promising, their application is very often limited to the scarcity of the training samples (e.g. very
few observations, very high cost of physical simulations, etc.). We first propose using a special type
of autoencoder (AE), coined interpolatory AE, to learn adapted representations for the components
to be retrieved, from very few training samples. We show how such representations can be plugged
into traditional solvers to tackle unmixing problems. This will be illustrated with applications in
X-ray astrophysics and spectrometry in nuclear Physics.
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Controlling uncertainties in generative models / 19

Potential and challenges of highly dimensional generative mod-
els
Auteur: Gregor Kasieczka1

1 Universität Hamburg

Auteur correspondant gregor.kasieczka@uni-hamburg.de

Recent progress in computer science, specifically the development normalising flows and diffu-
sion models, has brought about a breakthrough in the fidelity of generative models in particle
physics.

In this talk I will first review some of these new approaches and then discuss potential uses, consider-
ing the overall theme of uncertainties. This will allow us to discuss statistical properties, performance
metrics, inherent uncertainties, surrogate models and in-situ background estimation.

Architectures / 20

Robustness to Uncertainties in Machine Learning Applications
for HEP
Auteur: tommaso dorigo1

1 INFN Sezione di Padova

Auteur correspondant dorigo@pd.infn.it

In this presentation I will discuss recent trends in the handling of systematic uncertainties in HEP
analysis tasks, and techniques proposed to mitigate or remove their effect in the search for optimal
selection criteria and variable transformations.
The approaches discussed include nuisance-parametrized models, modified adversary losses, semi-
supervised learning approaches, inference-aware techniques, and other recent developments.

Controlling uncertainties in generative models / 21

Machine-learning and equations-informed tools for generation
and augmentation of turbulent data.
Auteur: Luca Biferale1

1 U Roma Tor Vergata

Auteur correspondant biferale@roma2.infn.it

Our ability to collect data is rapidly increasing thanks to computational power and the unprece-
dented diversity of sensors. But how good are we at extracting, reconstructing, and understand-
ing information from them? We present a short overview of some recent advancements for data-
assimilation and modelling of turbulent multi-scale flows using both data-driven and equations-
informed tools, starting from sparse and heterogeneous observations of complex fluid systems. Is-
sues connected to validations and benchmarks in the presence of full or partial observability will
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be discussed. A few examples of data-generation and data- augmentation based on Generative Ad-
versarial Learning, Diffusion Models and Nudging, for Eulerian and Lagrangian turbulence will be
quantitatively discussed.

-Synthetic lagrangian turbulence by generative diffusion models
T Li, L Biferale, F Bonaccorso, MA Scarpolini, M Buzzicotti
arXiv preprint arXiv:2307.08529 (2023).
- Multi-scale reconstruction of turbulent rotating flows with proper orthogonal decomposition and
generative adversarial networks
T Li, M Buzzicotti, L Biferale, F Bonaccorso, S Chen, M Wan
Journal of Fluid Mechanics 971, A3 (2023)
-Synchronization to big data: Nudging the Navier-Stokes equations for data assimilation of turbulent
flows
PC Di Leoni, A Mazzino, L Biferale Physical Review X 10 (1), 011023 (2020)

Opening session, Uncertainty Quantification / 22

Fair Universe Challenge Paris 2023

Auteurs: Aishik Ghosh1; Benjamin Nachman2; Benjamin ThorneNone; Chris Harris3; Daniel Whiteson1; David
Rousseau4; Elham Khoda5; Ihsan Ullah6; Isabelle Guyon7; Paolo Calafiura2; Peter NugentNone; Ragansu Chakkap-
paiNone; Sascha Diefenbacher2; Shih-Chieh Hsu5; Steven Farrell3; Wahid Bhimji2; Yuan-Tang ChouNone

1 UC Irvine
2 Lawrence Berkeley National Laboratory
3 NERSC, Berkeley Lab
4 IJCLab, CNRS/IN2P3, Université Paris-Saclay
5 University of Washington
6 ChaLearn
7 ChaLearn/Google

Auteurs correspondants: wbhimji@lbl.gov, rousseau@lal.in2p3.fr

The Fair Universe project is building a large-compute-scale AI ecosystem for sharing datasets, train-
ing large models and hosting challenges and benchmarks. Furthermore, the project is exploiting
this ecosystem for an AI challenge series focused on minimizing the effects of systematic uncer-
tainties in High-Energy Physics (HEP), and on predicting accurate confidence intervals. This talk
will describe the challenge platform we have developed that builds on the open-source benchmark
ecosystem Codabench to interface it to the NERSC HPC center and its Perlmutter system with over
7000 A100 GPUs. This presentation will also mark the launch of the first of our Fair Universe public
challenges hosted on this platform, the Fair Universe: HiggsML Uncertainty Challenge. There will
be a hackathon during the workshop to develop the current prototype challenge, the full version
of which will run in 2024. The Codabench/NERSC platform allows for hosting challenges also from
other communities, and we also intend to make our benchmark designs available as templates so
similar efforts can be easily launched in other domains.

Architectures / 23

Revisiting models and uncertainty with AI

Auteur: Gael Varoquaux1

1 INRIA-Saclay
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Auteur correspondant gael.varoquaux@inria.fr

Predictions from empirical evidence come with many sources of potential uncertainty and error.
First, the specific choices of models and concepts that we tack onto the observation give a strong
prism to the resulting
conclusion. Uncertainty on which functional form to use in a model, naturally results in uncertainty
of conclusions. Outside of mature (post-paradigmatic) quantitative sciences such as physics, the
mere choice of ingredients put the model (which quantities to measure) is open.

I will discuss how AI, or machine learning, brings a new angle to these questions, because it tack-
les complex observations with very flexible models. I believe that it opens new doors to scientific
evidence by putting the burden on validity on model outputs, rather than ingredients.

However, a given model fitted on data should ideally express its uncertainty as a probability of the
output given the input. This is particularly important in high-stakes applications such as health. I
would discuss how controlling this uncertainty requires to control a quantity know as calibration,
but also to go further and control the reminder, the “grouping loss”, which leads to challenging
estimation problems.

Architectures / 24

Data Subsampling for Bayesian Neural Networks
Auteur: Eiji Kawasaki1

Co-auteur: Markus Holzmann 2

1 CEA
2 Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France

Auteurs correspondants: markus.holzmann@grenoble.cnrs.fr, eiji.kawasaki@cea.fr

The development of an effective Uncertainty Quantification method that computes the predictive
distribution by marginalizing over Deep Neural Network parameter sets remains an important, chal-
lenging task. In this context, Markov Chain Monte Carlo algorithms do not scale well for large
datasets leading to difficulties in Neural Network posterior sampling. During this talk, we’ll show
that a generalization of the Metropolis Hastings algorithm allows to restrict the evaluation of the
likelihood to small mini-batches in a Bayesian inference context. Since it requires the computa-
tion of a so-called “noise penalty”determined by the variance of the training loss function over the
mini-batches, we refer to this data subsampling strategy as Penalty Bayesian Neural Networks –
PBNNs.

Closing session / 25

Fair Universe HiggsML Uncertainty Challenge: Lessons Learned
and plans
Auteurs: Benjamin Nachman1; David Rousseau2; Elham E Khoda3; Ragansu ChakkappaiNone; Sascha Diefenbacher1;
Wahid Bhimji1

1 Lawrence Berkeley National Laboratory
2 IJCLab, CNRS/IN2P3, Université Paris-Saclay
3 University of Washington

Auteurs correspondants: wbhimji@lbl.gov, ragansu.chakkappai@universite-paris-saclay.fr, sdiefenbacher@lbl.gov,
rousseau@lal.in2p3.fr, bpnachman@lbl.gov, elham.e.khoda@cern.ch
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The first FAIR Universe public challenge, FAIR Universe: HiggsML Uncertainty Challenge, will be
launched before this workshop. A dedicated hackathon within the workshop will refine the exist-
ing prototype, with the full version set for release in 2024. The intricacies of devising an efficient
scoring method for uncertainty-aware techniques pose a challenge, and the current approach will be
discussed during the workshop. This presentation will spotlight insights gained from diverse work-
shop activities and explore potential approaches for forthcoming iterations of the FAIR Universe
challenge.

Fair-Universe hackathon / 26

Overview of HiggsML Uncertainty Challenge

Auteur correspondant ragansu.chakkappai@universite-paris-saclay.fr

This afternoon’s hackathon will center around the prototype “HiggsML Uncertainty Challenge” to
be fully launched in 2024. This overview will describe the setup of the prototype challenge.

Opening session, Uncertainty Quantification / 27

Uncertainty Quantification in High Energy Physics

Opening session, Uncertainty Quantification / 28

Bayesian optimisation

Opening session, Uncertainty Quantification / 29

Uncertainty Quantification in Industry

Auteur correspondant vincent.chabridon@edf.fr

Opening session, Uncertainty Quantification / 30

Welcome

Auteur correspondant rousseau@lal.in2p3.fr

Simulation Based Inference / 31

Simulation-Based Inference: WhereClassical StatisticsMeetsMa-
chine Learning
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Auteur: Mikael Kuusela1

1 Carnegie Mellon University

Auteur correspondant mikael.kuusela@cern.ch

Simulation-based inference (SBI) refers to situations where the likelihood function cannot be readily
evaluated but a simulator is available to generate data from a parametric model for any value of the
unknown parameter. In recent years, a wide range of machine learning-based techniques have been
developed to enable classical statistical inference in the simulation-based setting. These methods en-
able learning likelihood functions, posteriors, likelihood ratios, confidence sets and other inferential
quantities with very high-dimensional data spaces using only simulations from the statistical model.
In this talk, I will give an overview of some of our recent work in this area. I will first present our
work on learning likelihood functions of otherwise intractable models for spatial data, which is one
of the first uses of SBI in the context of purely statistical models. While likelihood-based inference is
conceptually simple and computationally efficient, it only offers approximate coverage guarantees.
To obtain rigorous uncertainty quantification, one can combine SBI with Neyman inversion. From
this class of techniques, I will present Waldo, a method that uses neural predictions to form a Wald-
type test statistic which is inverted to obtain guaranteed-coverage confidence sets. Waldo provides
an appealing way of obtaining frequentist uncertainty quantification based on outputs of predictive
models, including deep neural networks and neural posteriors. I will conclude by outlining some
future research directions in SBI which revolve around challenges related to model discrepancy and
high-dimensional parameter spaces.

Explainable AI / 32

ExplainableAI for Interpretability of DeepNeural Networks : the
High Energy Physics perspective

Auteur correspondant msn@illinois.edu

Explainable AI (xAI) represents a set of processes and methods that allows human users to compre-
hend results created by machine learning algorithms. In the context of applications of AI to science,
we need to look beyond standard metrics of prediction performance such as accuracy to ensure that
AI models are robust to noise and adversarial samples, fair to biases in data populations, and gener-
ate trustworthy explanations of their predictions. A challenge is that xAI is hard to define and even
harder to evaluate. There is no universal definition of what it means for an AI model to be explain-
able nor well-defined metrics to evaluate the “goodness” of explanations generated for AI models.
Despite of these challenges, current xAI tools and methods are powerful allies for physicists. They
have great utility in aiding in the interpretation deep neural networks (DNNs) and this information
can be used to create better algorithms.

In this talk, I will discuss these aspects of xAI and the application of xAI methods to DNN models
used in jet tagging. In our case study of jets coming from top quark decay in the high energy proton-
proton collisions at the Large Hadron Collider, we use XAI to help identify which features play
the most important roles in identifying the top jets, how and why feature importance varies across
different XAI metrics, and how latent space representations encode information as well as correlate
with physical quantities. We additionally illustrate the activity of hidden layers as Neural Activation
Pattern (NAP) diagrams to understand how DNNs relay information across the layers and how this
understanding can help us to make such models significantly simpler by allowing effective model
re-optimization and hyperparameter tuning.

Explainable AI / 33

xAI in practice: current state of the art, limitations and perspec-
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tives

Auteur correspondant julien.girard2@cea.fr

Explainable Artificial Intelligence (xAI) is a vibrant research field that aims to provide an insight
on the decision taken by machine learning (ML) programs. The pervasiveness of AI in our soci-
etes pushed regulations (as the European AI Act) that demands transparency. We will present an
overview of the field of Explainable AI, focusing on local explanations. We will present the various
caveat identified by the literature, and some of our perspectives on xAI.

Simulation Based Inference / 34

SBI

Auteur correspondant mikael.kuusela@cern.ch

Simulation Based Inference / 35

SimulationBased Inference: TheFrequentist PerspectiveAbstract:

Auteur correspondant hprosper@fsu.edu

I give a brief introduction to the frequentist approach to simulation-based inference, which is often
referred to as likelihood-free frequentist inference. The approach is illustrated with three simple
examples, one from cosmology, one from particle physics, and the third from epidemiology.

Simulation Based Inference / 36

SBI Introduction

Auteur correspondant g.louppe@uliege.be

Frugal Unmixing, Reusing, and Sampling / 37

TBC

Unfolding (de-biasing) / 38

Unfolding in High Energy Physics

Auteur correspondant vincent.croft@cern.ch
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In high-energy physics, unfolding is a critical statistical process for interpreting experimental data
that is complicated by the intrinsic ill-posedness of the problem. This complexity arises from the
need to provide heuristics for statistical estimates that disentangle true physical phenomena from
observational distortions. We present a typical roadmap for why, when, and how unfolding is applied
in high energy physics experiments and how the treatment of uncertainties influences considerations
such as the choice of algorithm and regularisation. Finally, the concept of unbinned unfolding is
presented together with a description of how statistical and systematic uncertainties are typically
addressed in unfolding problems, together with a discussion of how statistical modelling and AI can
lead to better estimates in the future.

Unfolding (de-biasing) / 39

Uncertainty Quantification and Anomaly Detection with Eviden-
tial Deep Learning

Auteur correspondant msn@illinois.edu

Evidential Deep Learning (EDL) is an uncertainty-aware deep learning approach designed to provide
confidence (or epistemic uncertainty) about test data. It treats learning as an evidence acquisition
process where more evidence is interpreted as increased predictive confidence. This talk will provide
a brief overview of EDL for uncertainty quantification (UQ) and will discuss its connection with
anomaly detection (AD). Several examples will be presented, including ongoing work in this area
for HEP applications.

Closing session / 40

Highlights from the 1stCNRSAISSAIThematicQuarter onCausal-
ity

Auteur correspondant alessandro.leite@inria.fr

Causal and effect questions are the cornerstone of numerous scientific disciplines, providing a frame-
work for formulating and comprehending them under diverse conditions. In recent years, a notable
interdisciplinary effort has been to develop new methods to address causality-related challenges. The
first CNRS AISSAI Thematic Quarter on Causality, held earlier this year, marked a significant inter-
disciplinary step in advancing our understanding of causal relationships. This talk aims to highlight
some insights and methodologies gleaned during the quarter. They include the use of sigma-algebra
via the Witsenhausen Intrinsic Model (WIM) and the Information Dependency Model (IDM) as an
alternative approach to the traditional functional causal models and causal graphs, the axiomati-
zation of causality through Kolmogorov’s measure-theoretic axiomatization of probability, and the
use of cumulant tensors for characterizing hidden common causes when learning causal graphs in
linear non-Gaussian causal models. Moreover, the quarter underscored the promising role of diffu-
sion and normalizing flow methods in capturing the underlying causal data-generating processes,
offering new horizons in causal representation learning.

Frugal Unmixing, Reusing, and Sampling / 41

Machine Learning Assisted Sampling: Applications in Physics
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Auteur correspondant marylou.gabrie@polytechnique.edu

This workshop gathered experts in computational methods for rare events sampling interested in
machine learning methods and experts in generative models interested in applications to physical
systems. In this talk I will try to summarize the main directions of research that were highlighted
in the workshops: how learning can help for dimensionality reduction? which machine learning
strategies can be designed to sample rare events? and how generative models can be adapted to
physics-applications?

Closing session / 42

Fair Universe hackathon : outcome and plans

Auteur correspondant elham.e.khoda@cern.ch

Closing session / 43

Farewell

Auteur correspondant rousseau@lal.in2p3.fr

Opening session, Uncertainty Quantification / 44

Uncertainty modeling in particle physics
Auteur: Wouter Verkerke1

1 Nikhef/UvA

Auteur correspondant verkerke@nikhef.nl

I will present a pedagogical introduction to uncertainty modeling in particle physics. I will mostly
focus on the methods used at the Large Hadron Collider experiments, where systematic effects are
explicitly parameterized in the likelihood function in terms of nuisance parameters. Accurate model-
ing of systematic effects is of increasing importance at the LHC as the abundant data has decreased
statistical uncertainties in many measurements to be on par with systematic uncertainties. I will
discuss the reasoning behind the modeling approaches commonly chosen, common challenges in
the parametric modeling and in the interpretation of the corresponding uncertainties. I will con-
clude with the special considerations in the modeling of theoretical uncertainties, which are often
incompletely defined.

Opening session, Uncertainty Quantification / 46

An Introduction to Bayesian Optimization
Auteur: Emmanuel Vazquez1

1 L2S – Paris-Saclay
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Auteur correspondant emmanuel.vazquez@centralesupelec.fr

In this talk, we delve into the foundational principles of Bayesian optimization, a method partic-
ularly well-suited for optimizing deterministic or stochastic functions, whether scalar or vectorial,
especially when the evaluation of the function is computationally expensive and no gradient infor-
mation is available.

Bayesian optimization is particularly relevant in the domains of Design and Analysis of Computer
Experiments (DACE) and Uncertainty Quantification (UQ). In these areas, it is typically applied to
minimize costs or maximize performance through complex computer simulations, including those
utilizing Partial Differential Equations and finite element methods. Additionally, Bayesian optimiza-
tion has become increasingly popular in Machine Learning and Artificial Intelligence for optimizing
parameters in learning procedures, highlighting its versatility and effectiveness across a range of
fields.

At the core of Bayesian optimization is the practice of modeling the target function using the Gaus-
sian process framework. This modeling approach enables the construction of a sampling criterion,
also known as an acquisition function. We will examine various classic sampling criteria, including
the widely-used Expected Improvement (EI) criterion, and discuss the concept of Stepwise Uncer-
tainty Reduction (SUR). Our discussion will focus on how Bayesian optimization effectively manages
the balance between exploration and exploitation.

Fair-Universe hackathon / 47

Walkthrough of CodaBench and submissions

Join us for an interactive workshop featuring a hands-on hackathon and insightful discussions. The
session kicks off with a comprehensive tutorial on Codabench, an open-source challenge organiza-
tion platform (codabench.org). During this tutorial, participants will gain familiarity with various
aspects of the platform, including:
* Signing up/signing in to Codabench
* Navigating the overall structure of the platform
* Following the step-by-step getting started instructions
* Accessing sample submissions
* Utilizing the provided starting kit
* Submitting pre-existing submissions
* Exploring the leaderboard for scores
Once the hands-on tutorial concludes, participants are encouraged to apply their newfound skills
by engaging in the HiggsML Uncertainty Challenge. Organizers will be onsite to provide assistance
and guidance, ensuring a collaborative and enriching experience for all attendees.

Fair-Universe hackathon / 48

Scoring and Baseline Systematic Aware method

Fair-Universe hackathon / 49

Feedback from partipants
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Fair-Universe hackathon / 50

Hands-on hackathon and discussion

Fair-Universe hackathon / 51

Wrap up and next steps

Auteur correspondant wbhimji@lbl.gov

Opening session, Uncertainty Quantification / 52

Uncertainty Quantification and Machine Learning in Industry:
Current Practices and Challenges in Industrial Applications for
Low-Carbon Electricity Production
Auteur: Vincent CHABRIDON1

Co-auteurs: Antoine Ajenjo 1; Michaël Baudin 1; Nicolas Bousquet 1; Elias Fekhari 1; Bertrand Iooss 1; Merlin
Keller 1; Joseph Muré 1; Julien Pelamatti 1; Emmanuel Remy 1; Roman Sueur 1

1 EDF R&D

Auteurs correspondants: merlin.keller@edf.fr, bertrand.iooss@edf.fr, nicolas.bousquet@edf.fr, joseph.mure@edf.fr,
elias.fekhari@edf.fr, michael.baudin@edf.fr, julien.pelamatti@edf.fr, emmanuel.remy@edf.fr, vincent.chabridon@edf.fr,
roman.sueur@edf.fr, antoine.ajenjo@edf.fr

This talk will focus on a panel of current practices and challenges regarding both Uncertainty Quan-
tification (UQ) and Artificial Intelligence (mainly from the Machine Learning (ML) point of view), in
EDF’s industrial applications, especially in the topics of risk management of industrial production
assets. From our point of view, these two core topics, UQ & AI are, today, closely related to one
another, especially when targeted applications are critical industrial systems (such as, e.g., nuclear
reactors, dams, or wind farms). After presenting the commonly accepted methodology for UQ (and
its link with ML) in numerical simulation codes, this talk will try to provide a panel of motivating ap-
plications that EDF R&D is confronted with, together with the industrial problems they arise. Then,
a variety of technical and scientific challenges will be derived from these applications to introduce
several research tracks we developed and pursued in the last decade. In addition to these method-
ological contributions, an emphasis will be put on the various open-source tools and software that
have been produced as byproducts of this long-term research endeavour. Finally, a few current open
questions will be discussed at the end of the talk while opening the path to future research questions
and applications.

Simulation Based Inference / 53

An introduction to simulation-based inference
Auteur: Gilles Louppe1

1 University of Liège

Auteur correspondant g.louppe@uliege.be
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In this talk, we will introduce simulation-based inference and present how deep learning can be
used to solve complex inverse problems commonly found in scientific disciplines. We will give an
introduction and overview of the topic and present some of our recent work on the topic. We will
also discuss the opportunities and challenges.

Frugal Unmixing, Reusing, and Sampling / 54

Introduction at Institut Pascal

Fair-Universe hackathon / 55

Introduction
Auteur correspondant wbhimji@lbl.gov
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