Orateur
Description
Particle correlations have been traditionally employed in the study of the collective phenomena observed in hadronic and heavy ion collisions by using azimuthal distributions, while quantum statistical effects and final-state interactions can be accessed by femtoscopic measurements. Femtoscopic correlations of identified hadrons are measured with data recorded by the CMS experiment at the LHC over a broad multiplicity range and different pair transverse momenta. In this talk, results on the femtoscopic correlations of strange particles ($\text{K}^{0}_{\text{S}}$, $\Lambda$ and $\bar{\Lambda}$) are reported for proton-lead (pPb) collisions at $\sqrt{s_{\mathrm{NN}}} = $ 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV using LHC Run 2 data collected by the CMS experiment. The strong interaction scattering parameters, scattering length and effective range, are extracted using the Lednick\'y-Lyuboshitz model for both pPb and PbPb collisions, and compared with other experimental and theoretical results. The measurements are performed in several multiplicity and centrality bins and as a function of of the pair average momentum.