Orateur
Description
Strange hadrons have been suggested as sensitive probes for the medium properties of the nuclear matter created in heavy-ion collisions. At few-GeV collision energies, the formed medium is dense and baryon-rich due to the baryon stopping. Since strange hadrons are produced near or below the threshold, their yields, especially the excitation function of multi-strange (anti-)hyperons, may provide strong constraints on the equation-of-state (EoS) of high baryon density matter.
In this presentation, recent results on strange hadron production in Au + Au collisions at $\sqrt{s_{\rm{NN}}}$ = 3.0, 3.2, 3.5, 3.9 and 4.5 GeV with the fixed-target mode from the STAR experiment will be presented. These results include the transverse mass spectra, rapidity density distributions, particle ratios, and their centrality dependence of strange hadrons ($K^{\pm},~K^0_S,~\phi,~\Lambda, ~\Xi^-$). These results will be compared with those from higher collision energies and physics implication will be discussed by comparing to the thermal and transport model calculations.