11–15 avr. 2022
Sorbonne U - Campus Pierre et Marie Curie
Fuseau horaire Europe/Paris
Slides and video recording already available for most talks, see under "Contribution List"

Topological String on Non-Commutative Resolutions

Non programmé
1h
Amphi Charpak (Sorbonne U - Campus Pierre et Marie Curie)

Amphi Charpak

Sorbonne U - Campus Pierre et Marie Curie

4 place Jussieu, 75005 Paris

Orateur

Albrecht Klemm (Bonn)

Description

Based on a project with Sheldon Katz, Thorsten Schimannek and Eric Sharpe  we describe a simple example of a non-commutative resolution  namely the one of a singular double cover of $P^3$. This exhibits 84 nodes whose small blow ups give rise to torsion classes in $H_2(\hat M,Z)$. The torsion classes support a non-trivial B-field and can be described in terms of non-commutative geometry. We argue that this geometry corresponds to the Landau-Ginzburg phase of the complete intersection of  four quadrics in $P^7$.  Like the mirror of the double cover of $P^3$ the mirror of the latter has a one parameter hyper-geometric Picard-Fuchs equation, albeit with a second point of maximal unipotent monodromy. It is this second MUM point that yields the B-model description of the non-commutative resolution and allows detailed studies of the higher genus BPS invariants on the non-commutative resolution which are obtained from the wave function transform of  the standard string partition function $Z$ at the first  MUM point. We provide some geometric checks for the BPS states and some implications for the arithmetic understanding of one parameter families that is recently developed.

Documents de présentation