

$n_g^{\beta,0}$	$\beta = 1$	2	3	4	5	6
g = 0	147526	64415616	711860273440	11596528004344320	233938237312624658400	5403936140181888393638272
1	0	20160	10732175296	902646044328864	50712027457008177856	2461377693242784849884352
2	0	504	-8275872	6249833130944	2700746768622436448	376922599978113825644184
3	0	0	-88512	-87429839184	10292236849965248	19650836158735384901936
4	0	0	0	198065872	-337281112359424	127720125422251398968
5	0	0	0	157306	6031964134528	-1760771999464321184
6	0	0	0	1632	-43153905216	72538234118612304
7	0	0	0	24	18764544	-2014447575952656
8	0	0	0	0	177024	33618983785016
9	0	0	0	0	0	-268869372720
10	0	0	0	0	0	459490472
11	0	0	0	0	0	238896
12	0	0	0	0	0	4536
13	0	0	0	0	0	0

Table 1. Non-vanishing Gopakumar-Vafa numbers for the non-commutative resolution of degenerate double cover of \mathbb{P}^3 (denoted $X_8(1^4, 4)$) with \mathbb{Z}_2 charge 0 up to $\beta = 6$, calculated at the $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ MUM point of four quadrics in \mathbb{P}^7 (denoted $X_{2,2,2,2}(1^9)$).

$n_g^{\beta,1}$	$\beta = 1$	2	3	4	5	6
g = 0	14752	64419296	711860273440	11596528020448992	233938237312624658400	5403936140182066358700128
1	0	21152	10732175296	902646048376992	50712027457008177856	2461377693242840073388128
2	0	360	-8275872	6249834146800	2700746768622436448	376922599978124915164776
3	0	6	-88512	-87429664640	10292236849965248	19650836158738175255854
4	0	0	0	198149928	-337281112359424	127720125422926728320
5	0	0	0	144144	6031964134528	-1760771999299008316
6	0	0	0	2520	-43153905216	72538234051130296
7	0	0	0	0	18764544	-2014447551562602
8	0	0	0	0	177024	33618973175488
9	0	0	0	0	0	-268866517172
10	0	0	0	0	0	458933912
11	0	0	0	0	0	284538
12	0	0	0	0	0	2496
13	0	0	0	0	0	40

Table 2. Analog GV numbers as in Table 1 but for \mathbb{Z}_2 charge 1. Note that $\sum_{q=0}^1 n_g^{\beta,q}(X_{nc}) = n_g^{\beta}(X_8(1^4, 4))$ $\forall g, \beta$, the latter are tabulated in [12], and 14752 is the number of lines in \mathbb{P}^3 that are 4 times tangent to a generic degree 8 surface [13, 14]. Further note that the Castelnovo bound for $n_g^{\beta,i}(X_{nc})$ together with the one $n_g^{\beta}(X_{2,2,2,2}(1^9))$ at north pole of the same moduli space $\mathcal{M}_{cs}(X_{2,2,2,2}(1^9)) = \mathbb{P}^1 \setminus \{0, z_{con}, \infty\}$ listed also in [12] provide additional boundary data to fix the holomorphic ambiguities and evaluate $n_g^{\beta,i}(X_{nc}), n_g^{\beta}(X_{2,2,2,2}(1^9))$ and $n_g^{\beta}(X_8(1^4, 4))$ to higher genus then before.

$n_{(d_1,1),0}^{(g)}$	g = 0	1	2	3	4
$d_1 = 0$	3	0	0	0	0
1	-180	-6	0	0	0
2	29270	342	9	0	0
3	40818484	-57484	-492	-12	0
4	4354611955	-81811190	85065	630	15
5	215303747352	-8954366490	122915960	-112040	-756

Table 37: Base degree 1 Gopakumar-Vafa invariants for $X_0^{(5)}$ with \mathbb{Z}_5 charge 0.

$n_{(d_1,1),\pm 1}^{(g)}$	g = 0	1	2	3	4
$d_1 = 0$	0	0	0	0	0
1	-200	0	0	0	0
2	28850	400	0	0	0
3	40815550	-56500	-600	0	0
4	4354596400	-81802600	83350	800	0
5	215303680450	-8954314100	122899250	-109400	-1000

Table 38: Base degree 1 Gopakumar-Vafa invariants for $X_0^{(5)}$ with \mathbb{Z}_5 charge ± 1 .

$n^{(g)}_{(d_1,1),\pm 2}$	g = 0	1	2	3	4
$d_1 = 0$	0	0	0	0	0
1	-250	0	0	0	0
2	28200	500	0	0	0
3	40810800	-54900	-750	0	0
4	4354571400	-81788800	80600	1000	0
5	215303571950	-8954229700	122872350	-105300	-1250

Table 39: Base degree 1 Gopakumar-Vafa invariants for $X_0^{(5)}$ with \mathbb{Z}_5 charge ± 2 .

References

- M. Kreuzer and H. Skarke, "Complete classification of reflexive polyhedra in four-dimensions," *Adv. Theor. Math. Phys.* 4 (2002) 1209–1230, arXiv:hep-th/0002240.
- P. Candelas, A. Dale, C. Lütken, and R. Schimmrigk, "Complete intersection calabi-yau manifolds," *Nuclear Physics B* 298 no. 3, (1988) 493-525. https://www.sciencedirect.com/science/article/pii/0550321388903525.

C.3
$$X_0^{(5)}$$

$n_{(d_1,d_2),0}^{(0)}$	$d_2 = 0$	1	2	3	4
$d_1 = 0$	0	3	-6	27	-192
1	90	-180	450	-2880	25740
2	90	29270	-117260	1030120	-11796650
3	90	40818484	14923920	-182269500	2713157820
4	90	4354611955	-9987106460	44828505450	-590900946660
5	90	215303747352	1554493980250	-8542333784568	120753741368778

Table 34: Genus 0 Gopakumar-Vafa invariants for $X_0^{(5)}$ with \mathbb{Z}_5 charge 0.

$n^{(0)}_{(d_1,d_2),\pm 1}$	$d_2 = 0$	1	2	3	4
$d_1 = 0$	0	0	0	0	0
1	100	-200	500	-3200	28600
2	100	28850	-115600	1016225	-11641250
3	100	40815550	14950200	-182549900	2717025075
4	100	4354596400	-9986764325	44823849500	-590823324900
5	100	215303680450	1554497429950	-8542398268200	120755025918450

Table 35: Genus 0 Gopakumar-Vafa invariants for $X_0^{(5)}$ with \mathbb{Z}_5 charge ± 1 .

$n_{(d_1,d_2),\pm 2}^{(0)}$	$d_2 = 0$	1	2	3	4
$d_1 = 0$	0	0	0	0	0
1	125	-250	625	-4000	35750
2	125	28200	-113050	994700	-11400375
3	125	40810800	14993100	-183006850	2723321475
4	125	4354571400	-9986212275	44816327125	-590697868950
5	125	215303571950	1554503015325	-8542502642700	120757104858075

Table 36: Genus 0 Gopakumar-Vafa invariants for $X_0^{(5)}$ with \mathbb{Z}_5 charge ± 2 .

The Picard-Fuchs system at the large volume point associated to $X_1^{(5)}$ is, in the mirror dual algebraic coordinates z_1, z_2 , generated by the operators

$$\mathcal{D}_{1} = \Theta_{1}^{2} - 3\Theta_{1}\Theta_{2} + 7\Theta_{2}^{2} + z_{1} \left(-3 - 11\Theta_{1} - 11\Theta_{1}^{2} \right) - z_{1}^{2} \left(1 + \Theta_{1} + \Theta_{2} \right) \left(1 + \Theta_{1} + 2\Theta_{2} \right) - z_{2} \left(1 + \Theta_{1} + 2\Theta_{2} \right) \left(14 + 15\Theta_{1} + 14\Theta_{2} \right) , \quad (8.3)$$
$$\mathcal{D}_{2} = \Theta_{2}^{3} - z_{2} \left(1 + \Theta_{1} + \Theta_{2} \right) \left(1 + \Theta_{1} + 2\Theta_{2} \right) \left(2 + \Theta_{1} + 2\Theta_{2} \right) ,$$

and the discriminant takes the form

$$\Delta = (1 - 11z_1 - z_1^2)^3 + \mathcal{O}(z_2), \qquad (8.4)$$

with the roots in the large base limit given by (5.52),

$$z_{+} = -\frac{1}{2} \left(11 + 5\sqrt{5} \right), \quad z_{-} = -\frac{1}{2} \left(11 - 5\sqrt{5} \right).$$
 (8.5)

To study the large volume limit corresponding to $X_{0,n.c.1}^{(5)}$, we resolve the triple tangency at $z_{-} = z_2 = 0$ by choosing coordinates v_1, v_2 such that

$$z_1 = \frac{5}{2} \left(25 - 11\sqrt{5} \right) \left(\frac{1}{5\sqrt{5}} - v_1 \right), \quad z_2 = -\frac{v_1^3 v_2}{\left(\frac{1}{5\sqrt{5}} - v_1 \right)^3}.$$
 (8.6)

The particular normalization can again be found by constructing an appropriate elliptic fibration, using the results from [26], and studying the Higgs transitions with B-fields. On the other hand, the correct choice of coordinates to find the large volume limit $X_{0,n.c.2}^{(5)}$ inside the triple tangency at $z_{+} = z_{2} = 0$ is given by w_{1}, w_{2} with

$$z_1 = -\frac{5}{2} \left(25 + 11\sqrt{5} \right) \left(\frac{1}{5\sqrt{5}} + w_1 \right) , \quad z_2 = \frac{w_1^3 w_2}{\left(\frac{1}{5\sqrt{5}} + w_1 \right)^3} . \tag{8.7}$$

Due to their size, we do not provide the generators of the respective Picard-Fuchs systems. However, the coefficients of the operators are not rational but contained in $\mathbb{Q}[\sqrt{5}]$ and the leading terms of the genus zero free energies are

$$\begin{split} F_{0,X_{0,\mathrm{n.c.1}}^{(5)}} = & \frac{1}{3!} c_{ijk} t^{i} t^{j} t^{k} + p_{2}(t^{1},t^{2}) - 5q_{1} \left(10 + z_{-}\right) + 3q_{2} - \frac{5}{8} q_{1}^{2} \left(79 + 7z_{-}\right) \\ & + 10q_{1}q_{2} \left(10 + z_{-}\right) - \frac{45}{8} q_{2}^{2} + \mathcal{O}(q^{3}) \,, \\ F_{0,X_{0,\mathrm{n.c.2}}^{(5)}} = & \frac{1}{3!} c_{ijk} t^{i} t^{j} t^{k} + p_{2}(t^{1},t^{2}) - 5q_{1} \left(10 + z_{+}\right) + 3q_{2} - \frac{5}{8} q_{1}^{2} \left(79 + 7z_{+}\right) \\ & + 10q_{1}q_{2} \left(10 + z_{+}\right) - \frac{45}{8} q_{2}^{2} + \mathcal{O}(q^{3}) \,, \end{split}$$

$$\end{split}$$

$$\tag{8.8}$$

with the triple intersection numbers in both cases being

 $c_{111} = 9, \quad c_{112} = 3, \quad c_{122} = 1, \quad c_{222} = 0.$ (8.9)

As we by now expect, these are the same as those of the smooth deformation $X_0^{(1)}$ of $X_0^{(5)}$. Comparing the expansions (8.8), it turns out that the free energies of $X_{0,n.c.1}^{(5)}$ and $X_{0,n.c.2}^{(5)}$ are