Orateur
Description
\documentclass[a4paper,oneside,12pt]{article}
\usepackage{geometry}
\geometry{top=25mm,bottom=25mm,left=25mm,right=25mm,nohead,nofoot,includeheadfoot}
\usepackage{graphicx}
\pagestyle{empty}
\begin{document}
{\Large \bf Concordance and challenges of the Dirac-Milne cosmology\par}
\vspace{0.5cm}
{\large \bf G. Chardin$^1$, G. Manfredi$^2$\par}
\vspace{0.2cm}
{\footnotesize\itshape
1. Centre National de la Recherche Scientifique, Rue Michel-Ange, 75016 Paris, France.\
2. Universit\'e de Strasbourg, CNRS, IPCMS UMR 7504, F-67000 Strasbourg, France.
\par}
\vspace{0.5cm}
\noindent
The Dirac-Milne cosmology [1] features a symmetric matter-antimatter universe,
which is the analog of the electron-hole system in a semiconductor, hence the reference to Dirac.
In this universe, matter and antimatter decouple gravitationally at $z \approx 10^{5}$,
avoiding annihilation at later epochs.
We recall the elements of concordance between our universe and the Dirac-Milne universe on the age,
SN1a luminosity distance, nucleosynthesis, Hubble constant z-dependence and,
very surprisingly, CMB angular scale.
We discuss the tensions on helium-3 production and BAO, as well as future tests of the
Dirac-Milne cosmology, notably in structure formation [2-4].
Finally, following Price, we provide arguments that the Dirac-Milne universe and
MOND (Modified Newtonian Dynamics) may be explained,
{\it within General Relativity}, by the vacuum polarisation as soon as negative
mass components exist (as virtual particles) in the vacuum.
\setlength\parindent{0pt}\vspace{2ex}
\textbf{References}\par
\footnotesize
\vspace{0.5cm}
[1] A. Benoit-L{\'e}vy and G. Chardin, A\&A {\bf 537}, A78 (2012).
[2] G. Chardin, G. Manfredi, Hyperfine Interactions, {\bf 239}: 45 (2018); arXiv:1807.11198
[3] G. Manfredi, J.-L. Rouet, B. Miller, G. Chardin, Phys. Rev. D {\bf 98}, 023514 (2018).
[4] G. Manfredi, J.-L. Rouet, B. Miller, G. Chardin, this conference.
\end{document}