The development of innovative methods for fission trigger construction is part of the FRØZEN project which aims to get a better understanding of the angular momentum generation and the energy partition between fragments in the fission process. The reconstruction of the very first moments after the scission point is essential and requires correlated neutron and gamma detection as well as...
This talk presents a physics-informed deep learning method for the quantitative estimation of the spatial coordinates of gamma interactions within a monolithic scintillator, with a focus on Positron Emission Tomography (PET) imaging. A Density Neural Network approach is designed to estimate the 2-dimensional gamma photon interaction coordinates in a fast lead tungstate (PbWO4) monolithic...
The Phase-II upgrade of the LHC will increase its instantaneous luminosity by a factor of 5-7 leading to the HL-LHC. The ATLAS Liquid Argon (LAr) calorimeter measures the energy of particles produced in LHC collisions. In order to enhance the ATLAS physics discovery potential in the blurred environment created by the pileup, it is crucial to have an excellent energy resolution and an accurate...
RAG-LAB est un groupe de travail sur le développement et l'utilisation de large language models (type chat bots) dans les laboratoires pour des usages spécifiques.
GammaLearn is a project to develop deep learning solutions for Imaging Atmospheric Cherenkov Telescopes data analysis and in particular for the Cherenkov Telescope Array Observatory (CTAO) currently under construction. Its first application is event reconstruction based on the images or videos recorded by Cherenkov telescopes.
In this talk, I will present the recent results obtained applying...
The CTAO (Cherenkov Telescope Array Observatory) is an international observatory currently under construction. With more than sixty telescopes, it will eventually be the largest and most sensitive ground-based gamma-ray observatory.
CTAO studies the high-energy universe by observing gamma rays emitted by violent phenomena (supernovae, black hole environments, etc.). These gamma rays produce...
Machine learning is often viewed as a black box when it comes to understanding its output, be it a decision or a score. Automatic anomaly detection is no exception to this rule, and quite often the data analyst is left to independently analyze the data in order to understand why a given event is tagged as an anomaly. Worst, the expert may end up scrutinizing over and over the same kind of rare...
The analysis of gamma radiation emitted by fission fragments has become an essential tool for studying the nuclear fission process. It allows probing the intrinsic properties of the fragments or exploring effects that are little studied experimentally, such as the sharing of excitation energy between fragments during nuclear fission.
However, the analysis of experimental fission gamma-ray...
In-beam gamma-ray spectroscopy, particularly with high-velocity recoil nuclei, necessitates precise Doppler correction. The Advanced GAmma Tracking Array (AGATA) represents a groundbreaking development in gamma-ray spectrometers, boasting the ability to track gamma-rays within the detector. This capability leads to exceptional position resolution which ensures optimal Doppler...
SuperKEKB and the future circular colliders aim at luminosity as high as of $10^{35} cm^{–2}s^{–1}$. This requires very high beams current and very small beam sizes (nano-beams). In order to reach such beam sizes the accelerator physicist needs to control beam quality and accelerator optics. In particular, controlling even small linear and nonlinear effects that can perturb the optics is...
ARRONAX, Accélérateur pour la Recherche en Radiochimie et Oncologie à Nantes Atlantique, est un cyclotron multi-particules capable de produire des protons à haute intensité (2 × 375 μA) et à haute énergie (70 MeV). Il assure la précision de la livraison des faisceaux ioniques à la cible en garantissant leur énergie et leurs propriétés requises. Cependant, des anomalies peuvent survenir,...
We want to develop a new numerical analysis tool using artificial intelligence techniques to improve the denoising, segmentation, and reconstruction of images that characterize the beams of accelerated particles. These improvements aim to increase the accuracy of measurements, in particular to better characterize the halo of the beams, and reduce beam losses by ultimately making processes more...
We present works on heat load neural observers for the SPIRAL2 superconducting linear accelerator at GANIL. This virtual diagnostic focuses on superconducting (SC) radiofrequency (RF) cavities, which accelerate the particle beam. The cavities are housed in cryomodules, structures that ensure their cryogenic and radiofrequency operation in a superconducting state. Actuators control the pressure...
The technological advance of today’s storage rings and colliders elevated nonlinear beam dynamics to the forefront of accelerator design and operation. In the field of single-particle beam dynamics, the concept of dynamic aperture (DA), that is, the extent of the phase-space region where bounded motion occurs, is a key observable to guide the design of present, e.g. the CERN Large Hadron...
Accurately modeling and simulating dynamic systems remains a central challenge in computational physics and numerical engineering. Traditional approaches, such as time series prediction and ordinary differential equation (ODE) modeling, have been widely explored in the literature. However, these methods fall short when applied to the complex and potentially discontinuous behavior of particle...
Designing superconducting magnets presents a challenge due to their multi-physics complexity, diverse analytical tools, and often imprecise specifications. To streamline this process, we introduce ALESIA, a novel optimisation and data management toolbox developed at CEA-IRFU.
ALESIA leverages advanced algorithms, including nonlinear programming techniques, evolutionary algorithms, active...
Neural Simulation-Based Inference (NSBI) is a powerful class of machine learning (ML)-based methods for statistical inference that naturally handle high dimensional parameter estimation without the need to bin data into low-dimensional summary histograms. Such methods are promising for a range of measurements at the Large Hadron Collider, where no single observable may be optimal to scan over...
The Fair Universe project organised the HiggsML Uncertainty Challenge, is taking place from September 2024 to 15 March 2025. This is a [NeurIPS 2025 competition] (https://blog.neurips.cc/2024/06/04/neurips-2024-competitions-announced/).
This groundbreaking competition in high-energy physics (HEP) and machine learning was the first to place a strong emphasis on uncertainties, focusing on...
In this presentation, we will explore the application of machine learning techniques in cosmology, focusing on the analysis of Cosmic Microwave Background (CMB) maps. Accurately calculating the tensor-to-scalar ratio from CMB data is a crucial yet challenging task, as it holds the key to understanding primordial gravitational waves and the early universe's inflationary period. I will discuss...
The use of deep learning in ecology and ethology offers transformative possibilities, enabling non-invasive and more efficient methodologies for individual identification and behavioral analysis on video. A first study focused on the development of tools with deep learning to automatically detect and identify individual Japanese macaques (Macaca fuscata) with the goal of generating a reliable...
The CNRS AI Center for Science and Science for AI (AISSAI, https://aissai.cnrs.fr/) aims to structure and organize cross-disciplinary actions involving all CNRS institutes at the interfaces with AI. AISSAI became in January 2024 a CNRS support and research unit (UAR2036). The center fosters dialogue between scientific disciplines interacting with AI, addresses domain-specific strategic issues...
Currently, artificial intelligence (AI) is a rapidly growing field. These methods can assist in solving very challenging problems, thus providing significant time savings in finding solutions. The methods are diverse and evolve quickly, making it very beneficial to come together, share knowledge, train, and capitalize on our expertise. This is the purpose of the IntheArt group focused on AI...