A multimessenger GW-GRB study of the sGRB population

PhD Candidate: Matteo Pracchia

Thesis Director: Frédérique Marion, Co-advisor: Michał Wąs

LAPP, Annecy, 17/03/2023

Overview

- Part One: basic concepts
 - Gravitational waves (GW)
 - Gamma-Ray Bursts (GRBs)
 - The joint detection of 17th August 2017
- Part Two: Gravitational waves data analysis
 - The search for compact binary coalescence (CBC) events
 - CBC population properties
 - GW followup analysis of GRBs
- Part Three: A multimessenger GW-GRB study of the sGRB population
 - What can GRB 170817A tell us about the short GRB population?
 - How many joint detections can we expect during next observing runs?

Part One: basic concepts

Gravitational Waves

- Ripples in spacetime generated by accelerating masses
- Behavior and propagation described by General relativity
- Extremely feeble phenomena

Gravitational Waves

- Compact binary coalescences (CBCs): a good GW source
 - Binary neutron stars (BNS), Neutron star/black hole systems (NSBH), binary black holes (BBH)

Interferometers (IFOs)

$$\Delta L(t) = h(t)L$$

- $L \sim 3-4$ km, $h \sim 10^{-21}-10^{-22}$
- Devices to improve sensitivity
- $\Delta L \sim 10^{-18} 10^{-19} \text{ m}$
- Less than one millionth the size of an atom

Credit: NASA

IGWN

International Gravitational-Wave observatory Network

Gamma-ray bursts

- Highly variable high energy flashes of light of astronomical origin
- Discovered at the end of the 60's by Vela spy satellites

Credit: NASA

GRB detectors

- Instruments are commonly placed on spacecrafts
 - Gamma-rays highly interactive with Earth's atmosphere
- Different detectors, different energy bands

ξ

T₉₀ and GRB classification

- T₉₀: time in which 90% of photons of a GRB event are detected
 - Depends on detector's sensitivity and energy band

GRB photon spectrum

- Photon emission: ~ keV to ~ MeV
- Band function: empirical law fitting spectra GRBs

$$N(E) = \begin{cases} A \left(\frac{E}{100 \text{ keV}}\right)^{\alpha_{\rm B}} e^{-\frac{E}{E_0}}, & E < (\alpha_{\rm B} - \beta_{\rm B}) E_0 \\ A \left[\frac{(\alpha_{\rm B} - \beta_{\rm B}) E_0}{100 \text{ keV}}\right]^{\alpha_{\rm B} - \beta_{\rm B}} e^{\beta_{\rm B} - \alpha_{\rm B}} \left(\frac{E}{100 \text{ keV}}\right)^{\beta_{\rm B}}, & E \ge (\alpha_{\rm B} - \beta_{\rm B}) E_0 \end{cases}$$

Fermi/GBM short GRBs typical values

$$lpha_{
m B} \sim -0.5$$

$$eta_{
m B} \sim -2.25$$

$$E_{
m peak} = (2+lpha_{
m B})E_0 \sim 800~{
m keV}$$

Gamma-ray bursts emission

- Highly relativistic emission
 - Collimated into a jet
- Main emission event (prompt)
- Multiband afterglow emission

Credits: NASA 12

The joint detection of 17/08/17

- Unambiguous joint detection of a BNS merger
 GW signal and a sGRB
 - GRB 170817A detected ~1.74 ± 0.05 s
 after GW170817 merger
 - Same GRB detected by Fermi/GBM and Integral/SPI-ACS
 - Joint detection confirmed through observations of the afterglow

GW170817

- $1.36 \text{ M}_{\odot} < \text{m}_{1} < 1.60 \text{ M}_{\odot}$, $1.17 \text{ M}_{\odot} < \text{m}_{2} < 1.36 \text{ M}_{\odot}$
 - First GW detected from a BNS
- Three IFOs detection
 - Lack of signal from Virgo detector

GW170817

$$D_L = 40^{+8}_{-14} \ {
m Mpc}$$

- Compatible with galaxy
 NGC 4993: z = 0.009783
- ullet Binary inclination $\sim 151^{+15}_{-11}~{
 m deg}$
- Kilonova AT2017 gfo
 - EM transient in UV,Optical & NIR

GRB 170817A

- Poor Fermi/GBM localization because low flux and South Atlantic anomaly
- Position compatible with GW170817 & NGC 4993

GRB 170817A afterglow

Credit: Salafia & Ghirlanda 2022

- Peak around t_{peak} ~ 155 d
 - Clue of off-axis observation
- Viewing angle from jet axis estimated: O~15°-30°

GRB 170817A energetics

- Several possible scenarios
 - Most likely a structured jet seen off-axis
- Is there an undetected part of the sGRB population?

Population model: luminosity function

- How is the luminosity probability distributed?
- What can we learn from GRB 170817A?
- Can we exploit GW analysis results?

Part Two: GW data analysis

The search for CBC events

- 91 CBC candidate events
 - Mostly BBH, 2 BNS and 2 NSBH
- Two latencies of search
 - Online (~ minutes long)
 - Offline (~ weeks long)

CBC and BNS rates

- BNS local rate density from GWTC-2 analysis
 - \circ Uniform NS mass distribution from 1 to 2.5 M $_{\odot}$

$$ho \quad R_{
m BNS} = 320^{+490}_{-240}~{
m Gpc}^{-3}~{
m yr}^{-1}$$

- BNS local rate density from GWTC-3 analysis
 - Joint mass distribution for all CBC sources

	Local rate density $[Gpc^{-3} yr^{-1}]$						
Model	BNS	NSBH	BBH	Full			
PDB	44^{+96}_{-34}	73^{+67}_{-37}	22^{+8}_{-6}	150^{+170}_{-71}			
MS	660^{+1040}_{-530}	49^{+91}_{-38}	37^{+24}_{-13}	770^{+1030}_{-530}			
BGP	98.0^{+260}_{-85}	32^{+62}_{-24}	33^{+16}_{-10}	180^{+270}_{-110}			
Merged	10 - 1700	7.8 - 140	16 - 61	72 - 1800			

GW followup search of GRBs

- Search for possibly subthreshold GW around the GRB trigger time and GRB sky position
- Two kinds of searches
 - Modeled search (PyGRB): matched filter analysis
 - Search for CBC signals
 - Unmodeled search (X-pipeline): coherent analysis
 - Search for generic signals

PyGRB

- Pipeline contained within PyCBC
- 30-1000 Hz frequency band
- On-source window: [-5, +1] s
- Coherent matched filtering
 - BNS and NSBH waveforms with
 0° and 180° degrees of inclination
 - Potential signals ranked through their signal-to-noise ratio

PyGRB

- Background characterization
 - ~90 minutes around GRB trigger, 6 s
 off-source trials
- Potential signals in on-source window compared to background
 - Statistical significance as false alarm probability (FAP)
- Sensitivity of searches determined by injecting signals into off-source data
- Efficiency as percentage of injections recovered

X-Pipeline

- Search for coherent excess energy
- On source window: [-600, max{+60, T₉₀}]
- 20-500 Hz frequency band
- Off-source trials of 660 s
- Sensitivity determined through injections
 - Long waveforms (BNS, NSBH, ADI)
 - Short waveforms (CSG)
- Autogating (from O3b)

Credits: Sutton et al. 2009

An O3b X-Pipeline focus

- 89 GRBs analyzed, 3 discarded
 - No significant events found
- 5 GRBs personally analyzed
 - GRB 191221802, GRB 191225309, GRB 191225735, GRB 200101861 and GRB 200120962
 - 2 IFOs analysis

GRB	191221802	191225309	191225735	200101861	200120962
IFOs	HV	LV	HL	LV	HV
p-value	*discarded*	0.219	0.346	0.571	0.029

An O3b X-Pipeline focus

- Example: GRB 200101861
- On-source events partly cut away
 from coherent consistency cuts
 - Glitches
 - Events having common features
 with background

An O3b X-Pipeline focus

- Loudest off-source events
- Coherent consistency cuts make drop drastically ranking statistics

Dip in the curve: vetoed injections

O3 X-Pipeline results

191 GRBs successfully analyzed through X-Pipeline

O3 PyGRB results

- 49 GRBs successfully analyzed through PyGRB
- BNS median values 119 & 149 Mpc for O3a & O3b (NSBH 160 & 207 Mpc)
 O3a

Part Three: A multimessenger GW-GRB study of the sGRB population

Population model: luminosity function

- How is the luminosity probability distributed?
- What can we learn from GRB 170817A?
- Can we exploit GW analysis results?

Population model: luminosity function

$$\phi_0(L) \equiv \frac{\mathrm{d}P}{\mathrm{d}\log L} = \begin{cases} \left(\frac{L}{L_{**}}\right)^{-\gamma_L} \left(\frac{L_{**}}{L_{*}}\right)^{-\alpha_L}, & L_0 \leq L < L_{**} \\ \left(\frac{L}{L_{*}}\right)^{-\alpha_L}, & L_{**} \leq L < L_{*} \\ \left(\frac{L}{L_{*}}\right)^{-\beta_L}, & L \geq L_{*} \end{cases}$$

$$P(\gamma_L, L_0|x) = rac{\mathfrak{L}(x|\gamma_L, L_0)\Pi(\gamma_L, L_0)}{\int_{\gamma_L^{min}}^{\gamma_L^{max}} \int_{L_0^{min}}^{L_0^{max}} \mathfrak{L}(x|\gamma_L, L_0)\Pi(\gamma_L, L_0) \mathrm{d}\gamma_L \mathrm{d}L_0}$$

- α_L , β_L , L_* and L_{**} constrained through mid-high luminosity observations
- γ_L and L_0 to be constrained through Bayesian analysis
- Exploiting PyGRB efficiency curves & BNS local rate density distribution

Mid-high luminosity parameters

Wanderman & Piran (2015)
$$\phi_0^{\text{WP15}}(L_{\text{iso}}) \equiv \frac{\mathrm{d}P}{\mathrm{d}\ln(L_{\text{iso}})} \propto \begin{cases} \left(\frac{L_{\text{iso}}}{L_*}\right)^{-\alpha_L}, & L_{\text{iso}} \leq L_*, \\ \left(\frac{L_{\text{iso}}}{L_*}\right)^{-\beta_L}, & L_{\text{iso}} > L_* \end{cases}$$

- Short GRBs samples from Fermi/GBM, Swift/BAT and CGRO/BATSE
- BNS as main progenitors of short GRBs
- α_I , β_I , L_* constrained through maximum likelihood method
 - \circ $\alpha_1 \sim 0.94$, $\beta_1 \sim 2$, $L_* \sim 2 \times 10^{52}$ erg s⁻¹
 - Low luminosity cutoff: $L_{**}=5x10^{49}$ erg s⁻¹

$$ho_{\text{sGRB}}(z) \propto \begin{cases} e^{rac{z-0.9}{0.39}}, & z \le 0.9 \\ e^{-rac{z-0.9}{0.26}}, & z > 0.9 \end{cases}$$
 $ho_0^{\text{WP15}} \equiv
ho_{\text{sGRB}}(z=0) \simeq 4.1 \text{ Gpc}^{-3} \text{ yr}^{-1}$
 $ho_0^{\text{WP15}} \equiv 220^{+490}_{-240} \text{ Gpc}^{-3} \text{ yr}^{-1}$

Population model: luminosity function

- Extension of analysis described in O2
 IGWN GRB followup paper
 - Rewrote entirely to Python3
 - \circ Broader γ_i parameter space
 - Added L₀ parameter
 - Added BNS rate information
 - Complete set of O1 to O3 PyGRB efficiency curves

Prior PDF

- Observed sGRB rate distribution vs z
- Logarithm of local observed rate density probability constant over γ_L and L_0
- BNS as main progenitors for short GRBs
 - BNS local rate density distribution from GW observations

Likelihood

PyGRB efficiency curve for a given sGRB *i*

$$P_i^{\det}(\gamma_L,L_0) = \int_0^\infty \phi_0(L,\gamma_L,L_0) \mathcal{N}_{\tilde{L}}(L) \mathrm{d} \ln L \int_0^\infty \eta_i(z) \frac{\mathrm{d} P_{\mathrm{obs}}^{\mathrm{GRB}}}{\mathrm{d} z} \delta(z-\tilde{z}) \mathrm{d} z$$
 Lognormal distribution for GRB 170817A
$$P_i^{-\det}(\gamma_L,L_0) = 1 - \int_0^\infty \eta_i(z) \frac{\mathrm{d} P_{\mathrm{obs}}^{\mathrm{GRB}}}{\mathrm{d} z} \mathrm{d} z$$
 Dirac delta distribution for NGC 4993 redshift
$$\mathfrak{L}(\gamma_L,L_0) = \sum_i^{N_{\mathrm{GRB}}} \left(P_i^{\det}(\gamma_L,L_0) \prod_{i \neq j} P_j^{-\det}(\gamma_L,L_0) \right)$$

- Likelihood: probability of detecting one GW transient associated to short GRBs detected during IGWN observing runs
 - Joint detection: same redshift as NGC 4993 and same measured luminosity as GRB 170817A
 - PyGRB GW efficiency curves

Posterior PDF

- L₀ compatible with luminosity measured for GRB 170817A
- No information about lower luminosity events
- From marginalized posterior $\gamma_t = 0.28 \pm 0.45$

Local rate density vs luminosity

Local rate density vs luminosity

$$R_0^{
m tot} = 124^{+433}_{-101}~{
m Gpc}^{-3}~{
m yr}^{-1}$$

GW network efficiency curves

- O3 PyGRB GW efficiency curves averaged
- Rescaled to O4 and O5 BNS ranges
- "No IFOs" duty cycle

$$\Upsilon = \sqrt{\frac{\sum_{i} r_{{\rm O}4,i}^{2}}{\sum_{i} r_{{\rm O}3,i}^{2}}} \qquad \eta_{{\rm O}4}^{\rm GW}(d_{\rm L}) = \eta_{{\rm O}3}^{\rm GW}(d_{\rm L}\Upsilon^{-1})$$

GW-GRB joint detection rates

Observed GRB rate + GW efficiency curves

$$R_{\rm GW-GRB}(< z) = R_0^{\rm GRB} \frac{\int_0^z \frac{\mathrm{d}P_{\rm GRB}}{\mathrm{d}z'} \eta_{\rm O4}^{\rm GW}(d_{\rm L}(z')) \mathrm{d}z'}{\int_0^{z_{max}} \frac{\mathrm{d}P_{\rm GRB}}{\mathrm{d}z'} \mathrm{d}z'}$$

- Normalized through Fermi/GBM observed rate (39.5 yr ⁻¹)
- Uncertainty from parameters and BNS ranges estimates

GW-GRB joint detection rates

$$R_{
m GW-GRB}^{
m O4} = 1.02^{+0.26}_{-0.28} \
m yr^{-1} \ R_{
m GW-GRB}^{
m O5} = 2.31^{+0.36}_{-0.82} \
m yr^{-1}$$

 ~ 78 % probability of having at least one joint detection in O4

Without low-luminosity GRB population:

$$ilde{R}_{
m GW-GRB}^{
m O4} = 0.63 \pm 0.13 \
m yr^{-1} \ ilde{R}_{
m GW-GRB}^{
m O5} = 1.63 \pm 0.45 \
m yr^{-1}$$

Dependence on NS mass distribution

Dependence on WP15 parameters

- Analysis run with different values of α_L , β_L and L_*
 - GWTC-2 BNS local rate density
 - $\circ ~~R_0^{
 m sGRB}(L>L_{**})=4.1~{
 m Gpc}^{-3}~{
 m yr}^{-1}$

Dependence on WP15 parameters

- Analysis run with different values of α_L , β_I and L_*
 - GWTC-2 BNS local rate density
 - $\circ ~~R_0^{
 m sGRB}(L>L_{**})=4.1~{
 m Gpc}^{-3}~{
 m yr}^{-1}$

Conclusions

- Big part of short GRB population undetected
 - Luminosity distribution peaks around GRB 170817A value
- Joint GW-GRB detection rate
 - Likely to have at least one joint detection during next observing runs

Future developments

- Future developments
 - Analysis with future O4 data
 - Similar analysis of full sGRB population
 - Data from GRB catalogues
 - Spectral peak energy dependent on L_{iso}
 - Dependence of L_{iso} on viewing angle

The End

(thank you for the attention)

Backup

Inside X-Pipeline

Rejected X-pipeline analysis: sensitivity

GRB 191221802

Likelihood plots

Fermi/GBM observed rate

Dependence on NS mass distribution

Comparing results for different NS mass distributions								
	Flat (O3a)	PDB (ind)	MS	BGP				
BNS local rate density [Gpc ⁻³ yr ⁻¹]	320^{+490}_{-240}	44^{+96}_{-34}	660^{+1040}_{-530}	98^{+260}_{-85}				
γ_L	0.28 ± 0.45	$0.01^{+0.38}_{-0.37}$	$0.38^{+0.48}_{-0.51}$	$0.13^{+0.43}_{-0.40}$				
sGRB local rate density $[Gpc^{-3} yr^{-1}]$	124^{+433}_{-101}	40^{+96}_{-26}	199^{+875}_{-173}	68^{+224}_{-51}				
O4 joint GW-GRB detection rate $[yr^{-1}]$	$1.02^{+0.26}_{-0.28}$	$0.96^{+0.17}_{-0.24}$	$1.05^{+0.33}_{-0.30}$	$0.99^{+0.21}_{-0.26}$				
O5 joint GW–GRB detection rate [yr ⁻¹]	$2.31^{+0.36}_{-0.82}$	$2.17^{+0.34}_{-0.71}$	$2.34^{+0.43}_{-0.84}$	$2.26^{+0.32}_{-0.79}$				

Dependence on WP15 parameters

α_L	β_L	$L_* [{\rm erg \ s^{-1}}]$	γ_L	$R_0^{\text{tot}} [\text{Gpc}^{-3} \text{ yr}^{-1}]$	$R_{\rm GW-GRB}^{\rm O4}~{ m [yr^{-1}]}$	$R_{\rm GW-GRB}^{\rm O5} [{\rm yr}^{-1}]$
0.81	1.3	1.6×10^{52}	$0.34^{+0.46}_{-0.47}$	133^{+490}_{-111}	$0.60^{+0.16}_{-0.17}$	$1.46^{+0.22}_{-0.57}$
0.81	2.0	3.3×10^{52}	$0.34^{+0.46}_{-0.47}$	132^{+482}_{-110}	$0.58^{+0.15}_{-0.16}$	$1.43^{+0.21}_{-0.55}$
0.81	3.0	2.0×10^{52}	$0.33^{+0.46}_{-0.47}$	130^{+482}_{-108}	$0.67^{+0.17}_{-0.19}$	$1.65^{+0.24}_{-0.64}$
0.94	1.3	3.3×10^{52}	0.28 ± 0.45	127^{+445}_{-104}	$0.92^{+0.24}_{-0.25}$	$2.06^{+0.33}_{-0.73}$
0.94	2.0	2.0×10^{52}	0.28 ± 0.45	124^{+433}_{-101}	$1.02^{+0.26}_{-0.28}$	$2.31^{+0.36}_{-0.82}$
0.94	3.0	1.6×10^{52}	0.27 ± 0.45	121^{+437}_{-99}	$1.14^{+0.29}_{-0.31}$	$2.56^{+0.40}_{-0.90}$
1.05	1.3	2.0×10^{52}	0.23 ± 0.44	116^{+402}_{-94}	$1.42^{+0.35}_{-0.37}$	$3.00^{+0.49}_{-0.98}$
1.05	2.0	1.6×10^{52}	$0.22^{+0.44}_{-0.43}$	112^{+387}_{-90}	$1.56^{+0.38}_{-0.40}$	$3.31^{+0.52}_{-1.09}$
1.05	3.0	3.3×10^{52}	$0.23^{+0.44}_{-0.43}$	115^{+391}_{-93}	$1.48^{+0.36}_{-0.38}$	$3.14^{+0.51}_{-1.03}$

GRB emission model

Prior PDF

