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Outline

1) Photometric redshifts calibration

2) Data : Flagship and 2pcf measurement

3) Full-shape analysis for Euclid GCph KP 3

4) BAO analysis for Euclid GCph KP 10
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Photometric redshifts calibration

Goal : find the relationship between the color space (magnitudes) and redshift.

Template fitting : a set of SED templates is made using observations or modelizations.
They can be shifted to any redshift and convolved with the transmission curves of a telescope 
before minimizing a χ² between templates and observations to infer a redshift

ML/DL : the relationship between colors and redshift is learnt by the algorithm thanks to a 
training on a galaxy dataset for which we have a spectroscopic redshift.
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Photometric redshifts calibration

Idea : exploit images rather than extracted photometry → more information
SDSS data release 12
Input : 1059678 galaxy images in u,g,r,i,z bands of size 32 × 32 px
Labels : spectroscopic redshifts

r band
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Photometric redshifts calibration

Idea : exploit images rather than extracted photometry → more information
SDSS data release 12
Input : 1059678 galaxy images in u,g,r,i,z bands of size 32 × 32 px
Labels : spectroscopic redshifts

SDSS u,g,r,i,z bands filter response
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Photometric redshifts calibration

Tested neural networks : sequential CNN

  
 

Sequential CNN architecture
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Photometric redshifts calibration

Tested neural networks : sequential CNN, inception CNN

  
 

  Inception block architecture (arXiv:1512.00567)
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https://arxiv.org/abs/1512.00567
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Photometric redshifts calibration

Tested neural networks : sequential CNN, inception CNN, ResNet34
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Photometric redshifts calibration

Results :

Obtained with ResNet34
σ = 1.16 x 10 -1

Bias = 2.88 x 10-2

η0.15 = 1.65 x 10-2

Comparison with a traditional
approach of random forest
σ : -13.7 %
Bias : - 27.4 %
η0.15 : - 61.2 %
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Photometric redshifts calibration

Example of PDFs produced after adaptation of the networks :

PIT distribution of the PDFs
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Flagship 2.1

- one octant of the sky, 145 < ra < 235 deg, 0 < dec < 90 deg

- 500 × 106 galaxies with VIS < 24.5 and photo-zs.

- fiducial cosmology :  Ωb = 0.049
Ωc = 0.27
h = 0.67
As = 2.1×109

ns = 0.96

- 13 bins between 0.2 < z < 2.54

0.2 < z < 0.38 2.36 < z < 2.54
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2pcf measurement

- Landy-Szalay 

- Errors : jackknife 
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2pcf measurement

 

- n(z) from Euclid preparation XII Optimizing 
the photometric sample of the Euclid survey 
for galaxy clustering and galaxy-galaxy 
lensing analyses

https://arxiv.org/abs/2104.05698
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Full-shape analysis

- Full-shape : restriction to 0.48° < θ < 1.7 °
Euclid forecasts defined an optimistic and pessimistic scenarios for GCph with
l
max

= 3000 → θ
min

= 0.12° or l
max

= 750 → θ
min

= 0.48°

- Joint fit :
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Full-shape analysis with modified n(z)

Goal of GCPHz WP paper 3 : study systematic uncertainties like n(z) model misspecifications

Modifications of n(z) :

Additive bias Broadening
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Full-shape analysis with modified n(z) :

Bias of n(z) :

Shift of 0.2 σ on h, As et Ωc
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Full-shape analysis with modified n(z) :

Broadening of n(z) :

Shift of 0.15 σ on h and Ωc
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Planned work for the full-shape analysis

- study of the effect of priors over the constraints.

- comparison of the optimistic and pessimistic scale cuts.

- analysis using the CPL dark energy parametrization with w0, wa.
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BAO analysis

- No restriction to small scales since we’re interested in the BAO peak (≠ full-shape).

- Template :

α quantifies an eventual shift of the BAO peak
in the data with respect to the fiducial cosmology.
Since the 2pcf is measured on Flagship, we 
expect α = 1.

B is a nuisance parameters accounting for
corrections of the amplitude.
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BAO analysis

BAO extracted from the 2pcf measured on Flagship, in each bin of redshift

θBAO and its error are obtained by MCMC with the previous template.
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BAO analysis

- Exploration of different templates :

The introduction of α-2 improved the constraints in previous analyses but this trend was not
observed in the following results.
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BAO analysis

- Validation test made by replacing the measured 2pcf by a theoretical one with gaussian noise 
of σ = σmeasured,Flagship. The mean over 100 realizations of this noise is in agreement with α = 1.

Mean best fit α and its associated scatter

 

 

1 2 3 4 5 6 7 8

α 1.003 0.993 0.993 0.994 0.992 0.992 0.998 0.988

±
0.016 0.009 0.009 0.063 0.015 0.010 0.006 0.061
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BAO analysis

- Exploration of different templates with the measured 2pcf, joint MCMC :

α and B are in agreement for all templates

 



  

BAO analysis

New measurement of the 2pcf with an improved resolution of 0.2 ° :

Range : θBAO,th ± 2° if θBAO,th > 2°, else [0°,4°]

 

 



  

BAO analysis

MCMC with the previous measurement (left) and the new one (right) :

The error on α is divided by 2 with the new measurement.

 

 



  

BAO analysis

Comparison including or excluding the last redshift bin :

In agreement at 1σ but there is an obvious systematic shift towards larger α and errors.
The robustness of the results with respect to the redshift bins used should be checked.
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Planned work for the BAO analysis

- robustness validation with respect to the redshift bins

- study of the scale cuts influence

- study of the impact of RSD

- study of the influence of the Limber approximation
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Thank you for your attention !

Questions ?
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Back-up
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Photometric redshifts

Loss function used to train : mean squared error

Metrics :

- Standard deviation of residuals σ = std(Δz) wtih Δz = zphot – zspec

- Bias : mean( | Δz | / (1 + zspec) )

- Outlier fraction at 15 % :  #(bias > 0.15) / #(test set)
+ fractions at 10 % and 5 %

- σNMAD = 1.4826 × median(| Δz | - median(Δz))

- σMAD    = 1.48 × median( | Δz | )
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Photometric redshifts

Side plots :

Learning error ξ = p(zphot
 - zspec | zspec)

→ in each bin of the histogram, I compute the mean and standard deviation of the zpredicted,i - zbin 

for all zspec,i falling into that bin

Prediction uncertainty µ = p( zphot
 - zspec | zphot)

→ in each bin of the histogram, I compute the mean and standard deviation of the zspec,i - zbin 

for all zpredicted,i falling into that bin

Additional statistics on ξ and µ :
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Photometric redshifts

Characterization of the PDFs :

Probability Integral Transform (PIT), for a galaxy i of redshift zspec = zi

If PDFs are often too narrow then the zspec will more often be under/overestimated and  
the PIT value will be close to 0 or 1.
If they are too wide then zspec will often be in the PDF, which favors intermediate PIT values

→ study of the PITs distribution : 
- if PDFs have inadequate shapes then the distribution will either be concave or convex. 
- if there is a bias between the predicted redshifts and zspec then it creates a slope

→ an ideal PIT distribution is horizontal and has no curvature.

 

CDF i(z i)=∫
0

zi

PDF i(z)dz
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Photometric redshifts

Example of a bad PIT distribution :

Many PDFs miss zspec The PIT distribution is convex

 



  

Vanishing gradients

The update of weights is proportional to the gradient of the loss function with respect to current 
weights. In the backpropagation, the chain rule for partial derivatives is used, which implies that
we can end up multiplying very small gradients in chain. This entails the death of some neurons
because their weights no longer change.

As for exploding gradients, Rectified activation functions like ReLu limit this issue because they 
can only saturate by negative values but the issue can still appear. Some oscillating functions
can be used to counter this problem 
like the  Growing Cosine Unit

https://commons.wikimedia.org/wiki/File:Growing_Cosine_Unit_(GCU)_activation_function.png
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https://arxiv.org/abs/1512.03385

The layer n give its output to layer n+1 and layer 
n+5 (in ResNet34) or n+3,… depending on the 
architecture

Benefit : when the number of layers is increased in a 
neural network, results improve before reaching a 
maximum and then degrade (vanishing gradients).

Idea :
residual = output – input ↔ output = residual + input

This enables the identity operation when the residual is fixed to 0. This is useful since the 
identity can’t be the output of a neural network if there is no skip connection (non linear 
activation functions) → the least useful layers have weights close to 0 but won’t make
gradients vanish because the skip connection will have larger weights.

Residual blocks
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Photometric redshifts

Euclid bands :

VIS 550-900 nm
Y 920-1146 nm
J 1146-1372 nm
H 1372-2000 nm

Euclid preparation: I. The Euclid Wide Survey
(arXiv:2108.01201)

 

https://arxiv.org/abs/2108.01201
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Full-shape analysis with modified n(z)

Influence of n(z) model misspecifications
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Angular power spectra

Core Cosmology Library : precision cosmological predictions for LSST (arXiv:1812.05995)

p(z) : normalized distribution of sources in redshift

Limber approximation : small angles (large l)

 

https://arxiv.org/abs/1812.05995
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Takahashi Halofit model :

Fitting formula for the dimensionless non-linear power spectrum (Takahashi et al. 2018) :
using the notation Δ²(k) = k3P(k)/(2π²), Q denoting the two-halo term, H the one-halo term and
L the linear power spectrum :

Δ²(k) = ΔQ²(k) + ΔH²(k) (two-halo and one-halo terms)

with f(y) = y/4 + y²/8

with y = k / kσ

kσ is defined so that  
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Takahashi Halofit model :

Defining                                

the best fit parameters of the Takahashi Halofit model are then :
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Model under-damping :

→ Use of Mead2020 (arXiv:2009.01858)

 

 

https://arxiv.org/abs/2009.01858
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Flagship 2.1

Equipopulated bins n(z) : Measured galaxy bias:
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