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Dark Energy Spectroscopic Instrument Y

S CMB
SN la
clustering

B (spss)

The goal

constrain dark energy by
measuring the expansion rate and
test gravity using 3D maps of
large-scale structures

The dinstrument

4m Mayall telescope (USA)

5000 Fiber-fed spectrograph
Footprint taking 36% of the sky
40 million spectra of galaxies
A successor to the BOSS/eB0OSS

Data taking now!
> Scientific survey started
on May 17th, 2021. &
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Bright Galaxy Survey (BGS)

3 million QSOs

z2=4

23 million ELGs ~S—
Z=2 N

2 million LRGs
z=0.7

13.5 million ’_,_,_Z,:_'LL—’—»
2=0.2

Dense and highly complete sample of bright low-z galaxies (z<0.5)
Simulated data (UCHUU Lightcone) is used to imitate the BGS




© Power Spectrum / Correlation function <

Galaxies Density contrast (overdensity field):

Critical over- . . .
density surface Two-point statistics:

= (6(x)6(x")) = /ik-(x_x’)

l
EM)2+IZ€w@MwMt

Clustering statistics
Statistics describing the spatial
distribution of galaxies




Theory and observations

What theories predict:
clustering of matter
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Cosmological model,
e.g. expansion rate
v of the universe H(z)

'i~Growth rate of
structure, f(z)

; Galaxy bias, b(z)

S5

What we actually observe:
clustering of galaxies
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Bias and RSD

Growth rate Directional cosine

This is only the
. On practice,

more accurate models
have to be used.

What theories
predict

What we actually
observe

Galaxy density field e I_ Matter distribution
(~1 5% of the matter) Galaxy bias ° aXIe\)/Selo?::ltieegecu = (Dark + baryonic)

(redshift space distortions RSD)



Testing the theory of gravity

Growth rate DESTI Y5 forecasts
d(z,t) = A(z)D,(t) : : :
f — dinD
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Analysis 4

Covariance matrix
Mocks calculation
(Simulations) (Jackknife)

Uncertainty estimation

Cosmological
parameters

Fitting

Galaxy catalogue

2-point correlation
function

Velocileptors .G}
arXiv:2005.00523



https://arxiv.org/abs/2005.00523

Analysis 4

Covariance matrix
Mocks calculation
(Simulations) (Jackknife)

Uncertainty estimation

Cosmological
parameters

Data Fitting

Galaxy catalogue

2-point correlation |
function
Theory
Velocileptors .G}

arXiv:2005.00523



https://arxiv.org/abs/2005.00523

1. Covariance

Standard approach: Creating thousands of mocks, compute the target
statistics on them and estimate the covariance

A problem: The mocks for covariance matrix estimation are
very expensive for certain datasets

How to solve?

1) Jackknife

a) Biased

b) Requires only one realization

c) Very imprecise

d) Has biases (large scales,
number density)

2) Analytic covariance
a) Small scales unresolved



Fitted jackknife
covariance
(fit covariance)

N_m mocks = 50 (for example)

The same N_m mocks are
used for jackknife covariance

— d fitted on N_m mocks

The same N_m mocks are
used to produce (N_m-1)
covariances

N, mocks

covariance
Cyls]

Nm covariances C;j[S/Sy]
made of N,-1 mocks

Covariance matrix

for the diagonals of
mock covariances

COV(Cii,ij)

Fitting a-
dependent
mean
Cij(a) to Nm
covariance
Cjfs]

Best-fit a

N, jackknife covariances Cj[Syl(a)
dependent on a

Fitted covariance




Jackknife covariance
Fit covariance
~ 1 Mock covariance

-

0.35 0.40 0.45 0.35 0.40 0.45
fO’g ng

Conventional method:

OQur method:

Similar performance

More information:
Trusov et al: arXiv:2306.16332

@


https://arxiv.org/abs/2306.16332
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b 2. Multitracer analysis :

Cross-correlations of several
samples allow to bypass cosmic Clustering of red and blue galaxies

variance for some of the parameters. (monopole of the correlation function)

Bigger the difference between the samples

(clustering properties, or bias) - the better. —— Blue tracer

—— Red tracer
w— Cross

For BGS, split the sample between
blue and red galaxies

&
<
~
Q
=
g-r color distribution =
5
o~
0

60 80
s [Mpc/h]

0.50 0.75 2 5 3
Color g-r _69_




Likelihood minimization

=== Theory
4 Multitracer
4 Single tracer

improvement

0.35 0.40

Z=1[0.1,0.2] Z =10.3,0.4] Z =[0.4,0.5]




3. LPT with

Compressed analysis

Measured quantities:

Growth rate fo8
AP parameters (difference
between fiducial and
observed cosmologies)

Pros:
Very fast computationally

Ccons:
Loss of information

ML techniques

Full modelling analysis

Measured quantities:

LCDM parameters (Qm, o8,
he.t.c.)

Pros:
No loss of information

Cons:
Extremely slow
computationally (~1s per
statistic analytically)



1)

2)

3)

Motivation

Full modelling fits provide the
maximum accuracy

Full modelling fits take a lot of

AL How to speed up?

Option 1: just emulate

Even longer for more complicated the multipoles with

analysis (Multitracer, Density neural . .
Split) networks/interpolation

Option 2: Can we do
something more

i
general~ D



Velocileptors: Momentum Expansion

2
PR = (P0) + ik ) - 4 0, 1)+

+(ao+azu2+a4#4+ )k Piin,ze1(k) + R}, >(1+02(kp)* +...)

In total 31 terms
which depend only
on cosmology

JJ
+ by (U7 +2ik;U5") | 2b1b2+ 2bs (V10 + ik, ) +
+2b1bs+ 20fT5, 7 avki+) ...+ Riov

Ajj + ikan,‘j - knkmAh?Al:?j

ikp UlmAlm + 2ik, AlmUlm + Alm Ulm

ni - j nj-i

) + 2bs

https://arxiv.org/pdf/2005.00523.pdf 3 % 1
oij = 00(k)3ij + 502(k) | kik; +mmﬁ+mg&4@@—§g,tn+R%%U @)



https://arxiv.org/pdf/2005.00523.pdf
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99.9% inside the line
99% inside the line
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Other projects

wmmm Uchuu BGS
= GLAM BGS

Production of the DESI-1like GLAM
mocks for BGS with inferred
luminosities and colors

Testing the theoretical systematics
for BGS

=23
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

z

EFT+ bs, b3

Base fit

EFT fit

bs, b3 fit

EFT extended + bs + b3




Conclusions

We have developed an approach which allows to circumvent the
jackknife bias, and at the same time reduce the amount of mocks
needed for the covariance matrix

We have verified that multitracer analysis does indeed improve the
precision up to 20%

We have developed a NN-powered tool to speed up perturbation theory
predictions, making computations faster by a factor of ~300,
potentially allowing for previously too demanding analysis

Further plans

Finish creation of the GLAM mocks
Using the NN approach go further and use data from simulations and
generalise to other theoretical frameworks

Analyse DESI BGS Y1 data using the techniques developed
(Full-modelling and multitracer analysis)



THANK YOU

It would be a pleasure to answer your
questions!

003-1040559 1250 003-77156.8 1760 0009-14563.7 73273




Main assumptions:

1) ALl covariance estimators try to estimate the
same “true” covariance

2) The mock covariance is yielding the “true”
unbiased covariance

3) We are focusing on the correlation function



Jackknife Mohammad-Percival correction

'@' T [— Jackknife no correction /\

Mohammad - Percival correctionx

Consists in generalizing
jackknife, and dinstead of
deleting pair-counts,

2 o 40 60
reweighting some of them by a o (Mpc/h]
fixed a

AAT. = D‘i D_i - pair-counts in the same region

CCT. = ZkﬁD_.le - pair-counts between the region and

the rest of the survey

DDtotal = Zk,'iDka - total paircounts of the survey
TTT. - total paircounts from the jackknife realization Standard —I—Tﬁ = DDtotal — AA'] _ 2(:(:T
Mohammad and _ 3 B
@ Percival: TT, = DD 1 AA, 2aCC,
*Mohammad & Percival (2021) arXiv:2109.07071



é; - normalized region counts estimator (a - £
a,C

) auto, Cc - cross)
]. TTﬁ - DDtotal B AAw‘ _ 20(:(:1.
ea,i — (n]kAA — AAZ)
’I’ij —
2 ’I’ij . .
ecz‘ = ( CC OéCC) We will discuss

/thws term later
Cov(TTy, TTy) = [Cov(CC,CC) + Cov(AA, AA) + 2Cov(AA,CC)]

Nk — 2x 2

Ny,

> (-t

J -
Fixed by &= Njk
1xe y =

cov(AA, AA)

(Njx —28)2 <& 1\ 2
- ek — B,
con(CC,00) = gt s Y (6 — 0c)

o

*More details in Mohammad & Percival (2021) arXiv:2109.07071



Ao?(§)/o(0)

0?(£)/a(0)
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Log-normal mocks ot

3 sets of 1500 mocks:

DESI Y5
LogNormal

nbar: 2x107%, 5x107%, 15x1074

Box size: (2 Gpc/h)?

Grid size: (512)°
Initial redshift: z=1

Redshift range: 0.8 < z < 1.1

Ra (deg)

1) Higher precision
2) Closer to DESI

Produced with mockfactory
(https://github.com/cosmodesi/mockfactory)



https://github.com/cosmodesi/mockfactory
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5% Jackknife with
Mohammad and Percival
correction.

Bias measure:

O'jk(gf) - Jmock(gﬁ)
O-[O-mock(gtf))]

Ao (&e)/a(o) =

uncertainty on mock
covariance matrix computed
using jackknife

—— Mohammad-Percival covariance 1= 5x 104

~—— Mohammad-Percival covariance =15 x 104"




9 - normalized counts estimator (a - auto, c TT. = DD. ... — AA, - 2acCC.
a,C - Cross)

Cov(TTy, TTy) = [Cov(CC,CC) + Cov(AA, AA) + 2Cov(AA,CC)]

Ny,
cov(AA, AA) 2( )
J k=
Fixed by &= Njk
ixed by @ =
(Nj — 28)> & ) 2+ VRN = 1)
—) Jjk _
CC,C0) = g 8, — 0.
CO’U( ) 2a2Njk(Njk—1) ;( k )

(Na— D)V —8) & i
CC,AA) = Ocr —0.) (0ar —0,) left unfixed
cov(CC, AA) BV ;( x—0 ) (0 r—0 ) eft unfixe &




Mohammad-Percival Fitted jackknife

(&o)
(&0))

mocks

mocks
2

2

Ao?(&p)/o
Ao?(&o)/o(

ocks(‘EZ)
(£2))

2

m
2
mocks

(o)
=
~
b
~
o)
<

Ao?(&,)/o(

ocks(§4)
macks($4 ) )

2
m
2

A=5x107%"7

A=15x%x10"4

196 regions
=== 100 regions

100 100 200
s [Mpc/h] s [Mpc/h]

Ao?(&E4)/0,
Ao?%(&4)/0(0







We have:

1500 lognormal mocks

Cosmological parameter

We can obtain:

1500 independent jackknife covariances

30 independent

1 mock-based covariance

Two main features to look at:

1)

2)

The value of the parameter estimated

The uncertainty on the parameter estimated

uncertainty

So we make 1500 fits:

Jackknife covariance: 50 mocks x 30 covs =

1500 fits
Fit covariance: 50 mocks x 30 covs = 1500 fits
Mock covariance: 1500 mocks x 1 cov = 1500

fits - covariance is produced from 1500 mocks

Fitting from 30 to 150 Mpc/h in bins
of 5 Mpc/h

Iminuit used (for computational
reasons)



Results on
cosmological fits

Setup:

1500 fits from each of the methods

: 50 mocks x 30 covs = 1500

fits
Standard jackknife: 50 mocks x 30 covs =
1500 fits

Mock covariance: 1500 mocks x 1 cov =
1500 fits - covariance is produced from
1500 mocks

0.35 0.40 0.45
ng

Mohammad-Percival covariance
Standard Jackknife covariance
Mock covariance

0.35 0.40 0.45
fo 8




Results on
cosmological fits

Setup:
1500 fits from each of the methods Jackknife covariance
Fit covariance
: 50 mocks x 30 covs = 1 Mock covariance
1500 fits

Fit covariance: 50 mocks x 30 covs = 1500 fits . @

Mock covariance: 1500 mocks x 1 cov = 1500
fits - covariance s produced from 1500 mocks . 0.4 0.5 0.35 0.40 0.45 0.35 0.40 0.45
fO'g ng fO'g

Fitting from 30 to 150 Mpc/h in bins of 5
Mpc/h

Conclusions: Fit covariance and Mock covariance perform in a very similar way,
while gives twice bigger contours. @



Results on
cosmological fits

Setup:

1500 fits from each of the methods

Fit covariance: 50 mocks x 30 covs = 1500 fits

0.4 0.5 0.35 0.40 0.45 0.35 0.40 0.45
fO'g fO'g fO'g

Conclusions: Fit covariance x10 starts deviating from the x50, but x25 is still
performing well @



Pull distributions

0.2 B 0.2 i 0.2

Lirs 000" = 5 2% o

Afog/o(fog) Afog/o(fog) Afog/o(fog)

Jackknife covariance
Fit covariance Ai(z)(WBPMpc™3) Mock Jackknife  Fit

Mock covariance 2% 104 1.03 1.40 1.05

5x 1074 0.99 1.42 1.05

15x 1074 1.00 1.56 1.08

standard deviation




EZ mocks (ELG, LRG) T

DESI Y5
LogNormal

2 sets of 1000 EZ mocks:
LRG and ELG

Box size: (6 Gpc/h)"3

Box redshift: 0.8/1.1 (LRG/ELG)
Redshift range: [0.8, 1.1]

DESI Y5 footprint

Ra (deg)

Credits to Cheng Zhao



—— Mohammad-Percival
~=~ Fit jk x50

Ao?(&p)/o(0?)

Ao?(&;)/a(a0?)

N
S
5
=
<
M
o~
S
3

100
s [Mpc/h]




LRG only

Fit x50
Full footprint
[ Southern Galactic Cap

80 100
s [Mpc/h]




Results on
cosmological fits

Setup:

1000 fits from each of the methods

: 50 mocks x 20 covs =
1000 fits

Fit covariance: 50 mocks x 20 covs = 1000 fits

Mock covariance: 1000 mocks x 1 cov = 1000
fits - covariance is produced from 1000 mocks

Fitting from 30 to 150 Mpc/h in bins of 5
Mpc/h

Jackknife
Fitted

~ 1 Mock

0.010
0.005

0.000Q
0.50 0.34

0.36




Results on
cosmological fits el soc (r S5

Jackknife ; Jackknife
Fitted Fitted
Mock Mock

Setup:

0.75 100 125 150 175 2.00 2.25 250 275
x?/dof

1000 fits from each of the methods

: 50 mocks x 20 covs =
1000 fits

Fit covariance: 50 mocks x 20 covs = 1000 fits

Mock covariance: 1000 mocks x 1 cov = 1000
fits - covariance is produced from 1000 mocks

Fitting from 30 to 150 Mpc/h in bins of 5
Mpc/h

Conclusions: Fit covariance and Mock covariance perform in a very similar way,
while gives twice bigger contours. @



S5

Z-bin Effective
redshift
0.1-0.2 0.16
0.2-0.3 0.25
0.3-0.4 0.35
0.4-0.5 0.43

Magnitude cut: r < 19.5

196 jackknife regions
Mohammad and Percival correction used
(arxiv.org:2109.07071)

Fitting from 32 Mpc/h to 144 Mpc/h in bins of 8 Mpc/h

Bayesian inference via MCMC

'@20 randoms

Abacus Cutsky mocks using Y5 footprint 4

FirstGen mocks

h =0.674, sigma8 = 0.8159, Omega_m = 0.308
Planck 2018 cosmology @.
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x320 times faster

Performance: huge gain in computational time for similar precision
(see next slide) 'G}



Mean of 25 LRG Abacus boxes

sigma_8

B NN
B pybird
EEm Velocileptors

02

03
04
05
06

Fitting in s=[25,150]
Omega®_m,sigma8,h

/Velocileptors:
bl,b2,alpha,alpha_v,c3,sv

bl,b2,alpha0d,alphal,alpha2,
alpha3,sv

N_s = 0.9625,
Omega®_b=0.049

01

02

03

04

05

06



151.0 . . . . . 15.0

25 LRG Abacus boxes




0.020

0.015 -
0.010
0.005 -

o

< 0.000
~0.005 -
~0.010 -
~0.015 -

-0.020

LPTRSD teststo ~
ensure the
approach
nerspectives



—18 1 ,’\ == Uchuu BGS

| \ m— GLAM BGS
|
“104{d
Features of the GLAM-BGS \
lightcones: a1 \ o
" 0-1ph vs. z
=21
1) Based on GLAM E1
2) CIUStering eVOIUtion iS present _230.05 0.|10 O.iS 0.l20 0.'25 0.I30 0.I35 0.110 0.215 0.50
Z
3) Color, absolute and apparent =g
magnitudes, other properties are [ Sibimag a2t
Uchuu mag cut -21
present e lchusmagetds
% 1] : Slc.:runr;aaggccu:t-»llgs)
. § —— GLAM mag cut -18
4) Lightcone represents BGS up to Sl v 22 HOD

mag < 20.0

5) All the tests are done on the fullsky

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 49
log10(Mh)



A(z)[h3Mpc—3]

Number density

10—5 .

—— Uchuu appmag<19.5
1 === GLAM appmag<19.5
| —— Uchuu appmag<19.5 & absmag<-21.5
—=- GLAM appmag<19.5 & absmag<-21.5

0.1 0.2 0.3 0.4
Z

0.5

50



Apparent magnitudes and colors

1e6 appmag < 19.5

3.0 1

[ Uchuu BGS Bright
[ GLAM BGS Bright

ANg

0.0

T T T

0.0 0.2 0.4 0.6
g-r color

T

0.8

1.0

1.2

le6

3.0 A1

2.5 1

2.0 1

1.54

1.0 1

0.5 1

[ Uchuu BGS
1 GLAM BGS
—— BGS Bright

0.0

16.0 165 170 175 18,0 185
Apparent magnitude

19.0

19.5

20.0

51



s&o(s)[Mpc/h]

Clustering

Monopole

10°

s [Mpc/h]

s&>(s)[Mpc/h]

Quadrupole
35
— 215
301 — i
25 - — 20l
— 19
204 — -18
15N 7\
10 -_ \\\\\ \\\\s
ST e
0
10° 10! 102
s [Mpc/h]
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