

Cosmological analysis of the DESI data to constrain general relativity and modified gravity models

Under the supervision of Pauline Zarrouk

Performed by Svyatoslav Trusov 2nd year PhD student

\bigoplus

Dark Energy Spectroscopic Instrument

The goal

 constrain dark energy by measuring the expansion rate and test gravity using 3D maps of large-scale structures

The instrument

- 4m Mayall telescope (USA)
- 5000 Fiber-fed spectrograph
- Footprint taking 36% of the sky
- 40 million spectra of galaxies
- A successor to the BOSS/eBOSS

Data taking now!

→ Scientific survey started on May 17th, 2021.

Bright Galaxy Survey (BGS)

Bright Galaxy Survey (BGS)

Dense and highly complete sample of bright low-z galaxies (z<0.5) Simulated data (UCHUU Lightcone) is used to imitate the BGS

Power Spectrum / Correlation function

Clustering statistics

Statistics describing the spatial distribution of galaxies

Density contrast (overdensity field):

$$\delta(\mathbf{x}) = rac{
ho(\mathbf{x}) - ar
ho}{ar
ho}$$

Two-point statistics:

$$egin{aligned} egin{aligned} \xi(r) = \langle \delta(\mathbf{x}) \delta(\mathbf{x}')
angle = \int rac{d^3k}{(2\pi)^3} P(k) e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')} \end{aligned}$$

$$\xi_l(s) = \frac{2l+1}{2} \sum_{j} \xi(s, \mu_j) P_l(\mu_j) d\mu$$

\bigoplus

What theories predict: clustering of matter

Cosmological model, e.g. expansion rate of the universe H(z)

Growth rate of
structure, f(z)

Galaxy bias, b(z)

What we actually observe: clustering of galaxies

Bias and RSD

Growth rate

$$\delta_g = (b + f\mu^2)\delta$$

What theories predict

This is only the linear theory. On practice, more accurate models have to be used.

Matter distribution

(Dark + baryonic)

What we actually observe

Galaxy density field (~15% of the matter)

Galaxy bias

Galaxies have peculiar velocities (redshift space distortions RSD)

Growth rate

$$\delta(x,t) = A(x)D_a(t)$$

$$f = \frac{dlnD}{dlna}$$

$$f \sim \Omega_m^{\frac{3(1-w_{DE})}{5-6w_{DE}}}$$

For **\CDM**:

 $w_{DE} = -1$

Analysis

arXiv:2005.00523

1. Covariance

Standard approach: Creating thousands of mocks, compute the target statistics on them and estimate the covariance

A problem: The mocks for covariance matrix estimation are very expensive for certain datasets

How to solve?

1) Jackknife

- a) Biased
- b) Requires only one realization
- c) Very imprecise
- d) Has biases (large scales, number density)

2) Analytic covariance

a) Small scales unresolved

Fitted jackknife covariance (fit covariance)

N_m mocks = 50 (for example)

The same N_m mocks are used for jackknife covariance → **a** fitted on N_m mocks

The same N_m mocks are used to produce (N_m-1) covariances

Conventional method: 1500 mocks

Our method: 50 mocks

Similar performance

More information:

Trusov et al: <u>arXiv:2306.16332</u>

\bigoplus

2. Multitracer analysis

Cross-correlations of several
samples allow to bypass cosmic
variance for some of the parameters.

Bigger the difference between the samples (clustering properties, or bias) - the better.

For BGS, split the sample between blue and red galaxies

Likelihood minimization

Bayesian inference

3. LPT with ML techniques

Compressed analysis

Measured quantities:

Growth rate fo8

AP parameters (difference between fiducial and observed cosmologies)

Pros:

Very fast computationally

Cons:

Loss of information

Full modelling analysis

Measured quantities:

LCDM parameters (Ω m, σ 8, h e.t.c.)

Pros:

No loss of information

Cons:

Extremely slow computationally (~1s per statistic analytically)

Motivation

- Full modelling fits provide the maximum accuracy
- 2) Full modelling fits take a lot of time
- 3) Even longer for more complicated analysis (Multitracer, Density Split)

How to speed up?

Option 1: just emulate the multipoles with neural networks/interpolation

Option 2: Can we do something more general?

Velocileptors: Momentum Expansion

$$\begin{split} P_s^{\text{ME}}(\pmb{k}) &= \left(P(k) + i(k\mu)v_{12,\hat{n}}(\pmb{k}) - \frac{(k\mu)^2}{2}\sigma_{12,\hat{n}\hat{n}}^2(\pmb{k})\right) + \\ &+ \left(\alpha_0 + \alpha_2\mu^2 + \alpha_4\mu^4 + \ldots\right)k^2P_{\text{lin,Zel}}(k) + R_h^3(1 + \sigma_v^2(k\mu)^2 + \ldots) \end{split}$$

In total 31 terms which depend only on cosmology

$$\sigma_{ij} = \sigma_0(k)\delta_{ij} + \frac{3}{2}\sigma_2(k)\left(\hat{k}_i\hat{k}_j - \frac{1}{3}\delta_{ij}\right)$$

$$P(k) = \int d^{3}q e^{ikq} e^{-\frac{1}{2}k_{i}k_{j}A_{ij}^{lin}} \left\{ 1 - \frac{1}{2}k_{i}k_{j}A^{loop}ij + \frac{i}{6}k_{i}k_{j}k_{k}W_{ijk} \right\} + b_{1} \left[(2ik_{i}U_{i} - k_{i}k_{j}A_{ij}^{10}) + b_{1}^{2} \left[\xi_{lin} + ik_{i}U_{i}^{11} - k_{i}k_{j}U_{i}^{lin}U_{j}^{lin} \right] + \frac{1}{2}b_{2}^{2} \xi_{lin}^{2} + 2ib_{1}b_{2}\xi_{lin}k_{i}U_{i}^{lin} - b_{2} \left((k_{i}k_{j}U_{i}^{lin}U_{i}^{lin}U_{i}^{lin} + ik_{i}U_{i}^{20}) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{i}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{j}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{j}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + (k_{i}k_{j})^{2} + k_{i}k_{j}U_{i}^{20} \right) + b_{3} \left((k_{i}k_{j})^{2} + (k_{i}k_{j})^{2$$

| 27 hours -> 5 minutes

Other projects

 Production of the DESI-like GLAM mocks for BGS with inferred luminosities and colors

 Testing the theoretical systematics for BGS

Conclusions

- We have developed an approach which allows to circumvent the jackknife bias, and at the same time reduce the amount of mocks needed for the covariance matrix
- We have verified that multitracer analysis does indeed improve the precision up to 20%
- We have developed a NN-powered tool to speed up perturbation theory predictions, making computations faster by a factor of ~300, potentially allowing for previously too demanding analysis

Further plans

- Finish creation of the GLAM mocks
- Using the NN approach go further and use data from simulations and generalise to other theoretical frameworks
- Analyse DESI BGS Y1 data using the techniques developed (Full-modelling and multitracer analysis)

THANK YOU

It would be a pleasure to answer your questions!

Main assumptions:

- 1) All covariance estimators try to estimate the same "true" covariance
- 2) The mock covariance is yielding the "true" unbiased covariance
- 3) We are focusing on the correlation function

Mohammad - Percival correction*

Consists in generalizing jackknife, and instead of deleting pair-counts, reweighting some of them by a fixed •

$$AA_i = D_iD_i$$
 - pair-counts in the same region

$$CC_i = \sum_{k \neq i} D_i D_k$$
 - pair-counts between the region and the rest of the survey

$$DD_{total} = \sum_{k,i} D_i D_k$$
 - total paircounts of the survey

$$\mathsf{TT}_{\mathtt{i}}$$
 - total paircounts from the jackknife realization

*Mohammad & Percival (2021) arXiv:2109.07071

Standard
$$TT_i = DD_{total} - AA_i - 2CC_i$$

 $ar{ heta}_{a,c}$ - normalized region counts estimator (a -

$$heta_{a,i} = rac{1}{n_{jk}-1}(n_{jk}\overline{AA}-AA_i)$$

$$heta_{c,i} = rac{2}{n_{jk} - 2lpha} (rac{n_{jk}}{2} \overline{CC} - lpha CC_i)$$

$$Cov(TT_k, TT_k) = [Cov(CC, CC) + Cov(AA, AA) + 2Cov(AA, CC)]$$

$$cov(AA,AA) = rac{N_{jk}-1}{N_{jk}} \sum_{k=1}^{N_{jk}} \left(heta_{a,k} - ar{ heta}_a
ight)^2.$$

$$cov(CC,CC) = rac{(N_{jk}-2oldsymbollpha)^2}{2oldsymbollpha^2N_{jk}(N_{jk}-1)} \sum_{k=1}^{N_{jk}} \left(heta_{c,k} - ar{ heta}_c
ight)^2 \quad egin{aligned} & & & \end{aligned}$$

Random catalogues

BOSS DR12 mocks

no correction:

$$lpha=1$$

MP correction:

Bias measure: $\Delta\sigma(\xi_\ell)/\sigma(\sigma)=rac{\sigma_{jk}(\xi_\ell)-\sigma_{mock}(\xi_\ell)}{\sigma[\sigma_{mock}(\xi_\ell))]}$

Log-normal mocks

3 sets of 1500 mocks:

nbar: 2×10^{-4} , 5×10^{-4} , 15×10^{-4}

Box size: $(2 \text{ Gpc/h})^3$

Grid size: $(512)^3$

Initial redshift: z=1

Redshift range: 0.8 < z < 1.1

- 1) Higher precision
- 2) Closer to DESI

Produced with mockfactory

(https://github.com/cosmodesi/mockfactory)

Jackknife with
 Mohammad and Percival
 correction.

Bias measure:

$$\Delta \sigma(\xi_\ell)/\sigma(\sigma) = rac{\sigma_{jk}(\xi_\ell) - \sigma_{mock}(\xi_\ell)}{\sigma[\sigma_{mock}(\xi_\ell))]}$$

uncertainty on mock covariance matrix computed using jackknife

$$\oplus$$

 $heta_{a,c}$ - normalized counts estimator (a - auto, c $au_{ ext{i}}$ = DD $_{ ext{total}}$ - AA $_{ ext{i}}$ - 2 $_{ ext{CC}}$ - cross)

$$Cov(TT_k, TT_k) = [Cov(CC, CC) + Cov(AA, AA) + 2Cov(AA, CC)]$$

$$cov(AA,AA) = rac{N_{jk}-1}{N_{j}k} \sum_{k=1}^{N_{jk}} \left(heta_{a,k} - ar{ heta}_a
ight)^2.$$

$$cov(CC,CC) = rac{(N_{jk}-2oldsymbollpha)^2}{2oldsymbollpha^2 N_{jk}(N_{jk}-1)} \sum_{k=1}^{N_{jk}} \left(heta_{c,k} - ar heta_c
ight)^2 \quad
ight)$$

Fixed by
$$lpha = rac{N_{jk}}{2 + \sqrt{2}(N_{jk} - 1)}$$

 $cov(CC,AA) = rac{(N_{jk}-1)(N_{jk}-lpha)}{2lpha N_{jk}} \sum_{i=1}^{N_{jk}} \left(heta_{c,k}-ar{ heta}_c
ight) \left(heta_{a,k}-ar{ heta}_a
ight)$ left unfixed

Cosmological parameter uncertainty

We have:

We can obtain:

1500 lognormal mocks

1500 independent jackknife covariances

30 independent x50 fit covariances

L mock-based covariance

Two main features to look at:

- 1) The value of the parameter estimated
- 2) The uncertainty on the parameter estimated

So we make 1500 fits:

Jackknife covariance: 50 mocks x 30 covs =
1500 fits

Fit covariance: 50 mocks x 30 covs = 1500 fits

Mock covariance: 1500 mocks x 1 cov = 1500 fits - covariance is produced from 1500 mocks

Fitting from 30 to 150 Mpc/h in bins of 5 Mpc/h

Iminuit used (for computational
reasons)

Results on cosmological fits

Setup:

1500 fits from each of the methods

MP covariance: $50 \text{ mocks } \times 30 \text{ covs} = 1500$ fits

Standard jackknife: 50 mocks x 30 covs = 1500 fits

Mock covariance: 1500 mocks x 1 cov = 1500 fits - covariance is produced from 1500 mocks

Results on cosmological fits

Setup:

1500 fits from each of the methods

Jackknife covariance: 50 mocks x 30 covs =
1500 fits

Fit covariance: 50 mocks x 30 covs = 1500 fits

Mock covariance: 1500 mocks x 1 cov = 1500 fits - covariance is produced from 1500 mocks

Fitting from 30 to 150 Mpc/h in bins of 5^{-1} Mpc/h

Conclusions: Fit covariance and Mock covariance perform in a very similar way, while Jackknife covariance gives twice bigger contours.

Results on cosmological fits

Setup:

1500 fits from each of the methods

Fit covariance: 50 mocks x 30 covs = 1500 fits

Conclusions: Fit covariance x10 starts deviating from the x50, but x25 is still performing well

Pull distributions

	Jackknife covariance
	Fit covariance
	Mock covariance

$\bar{n}(z)(h^3Mpc^{-3})$	Mock	Jackknife	Fit
2×10^{-4}	1.03	1.40	1.05
5×10^{-4}	0.99	1.42	1.05
15×10^{-4}	1.00	1.56	1.08

EZ mocks (ELG, LRG)


```
2 sets of 1000 EZ mocks:
LRG and ELG
```

Box size: (6 Gpc/h)^3

Box redshift: 0.8/1.1 (LRG/ELG)
Redshift range: [0.8, 1.1]

DESI Y5 footprint

Credits to Cheng Zhao

LRG only

Results on cosmological fits

Setup:

1000 fits from each of the methods

Jackknife covariance: 50 mocks x 20 covs =
1000 fits

Fit covariance: 50 mocks x 20 covs = 1000 fits

Mock covariance: 1000 mocks x 1 cov = 1000 fits - covariance is produced from 1000 mocks

Fitting from 30 to 150 Mpc/h in bins of 5 Mpc/h

Results on cosmological fits

Setup:

1000 fits from each of the methods

Jackknife covariance: 50 mocks x 20 covs =
1000 fits

Fit covariance: 50 mocks x 20 covs = 1000 fits

Mock covariance: 1000 mocks x 1 cov = 1000 fits - covariance is produced from 1000 mocks

Fitting from 30 to 150 Mpc/h in bins of 5 Mpc/h

Conclusions: Fit covariance and Mock covariance perform in a very similar way, while Jackknife covariance gives twice bigger contours.

Abacus Cutsky mocks using Y5 footprint

FirstGen mocks

Z-bin	Effective redshift
0.1-0.2	0.16
0.2-0.3	0.25
0.3-0.4	0.35
0.4-0.5	0.43

Magnitude cut: r < 19.5

196 jackknife regions Mohammad and Percival correction used (arxiv.org:2109.07071)

Fitting from 32 Mpc/h to 144 Mpc/h in bins of 8 Mpc/h

Bayesian inference via MCMC

h = 0.674, sigma8 = 0.8159, Omega_m = 0.308

Planck 2018 cosmology

x320 times faster

Performance: huge gain in computational time for similar precision (see next slide)

OmegaO_m,sigma8,h

NN/Velocileptors: b1,b2,alpha,alpha_v,c3,sv

Pybird:

b1,b2,alpha0,alpha1,alpha2,
alpha3,sv

N_s = 0.9625, Omega0_b=0.049

25 LRG Abacus boxes

 \bigoplus

LPT RSD tests to ensure the approach perspectives

Features of the GLAM-BGS lightcones:

- Based on GLAM E1
- 2) Clustering evolution is present
- Color, absolute and apparent magnitudes, other properties are present
- 4) Lightcone represents BGS up to mag < 20.0
- 5) All the tests are done on the fullsky

Number density

Apparent magnitudes and colors

Clustering

