

Light detection in liquid Xenon for nEXO and beyond

Fabrice Retiere for the nEXO collaboration

***TRIUMF**

nEXO for 0νββ

EXO-200

- Double sided Time Projection chamber
 - Optically transparent cathode in the center
 - 15 cm drift length
- Charge detection by crossedwires
- Light detection by Avalanche photo-diodes
 - And teflon "light guide"

Optimum energy estimator

Optimum estimator is linear combination of ionization + scintillation quanta Cancels fluctuation in relative quanta production

EXO-200 final

- Operation ended in 2018
- Decommissioning essentially completed

arXiv:1906.02723v3

• Full analysis paper out

Search for Neutrinoless Double-Beta Decay with the Complete EXO-200 Dataset

G. Anton,¹ I. Badhrees,^{2, a} P.S. Barbeau,³ D. Beck,⁴ V. Belov,⁵ T. Bhatta,⁶ M. Breidenbach,⁷ T. Brunner,^{8,9} G.F. Cao,¹⁰ W.R. Cen,¹⁰ C. Chambers,^{11, b} B. Cleveland,^{12, c} M. Coon,⁴ A. Craycraft,¹¹ T. Daniels,¹³ M. Danilov,^{5, d} L. Darroch,⁸ S.J. Daugherty,¹⁴ J. Davis,⁷ S. Delaquis,^{7, e} A. Der Mesrobian-Kabakian,¹² R. DeVoe,¹⁵ J. Dilling,⁹ A. Dolgolenko,⁵ M.J. Dolinski,¹⁶ J. Echevers,⁴ W. Fairbank Jr.,¹¹ D. Fairbank,¹¹ J. Farine,¹² S. Feyzbakhsh,¹⁷ P. Fierlinger,¹⁸ D. Fudenberg,¹⁵ P. Gautam,¹⁶ R. Gornea,^{2,9} G. Gratta,¹⁵ C. Hall,¹⁹ E.V. Hansen,¹⁶ J. Hoessl,¹ P. Hufschmidt,¹ M. Hughes,²⁰ A. Iverson,¹¹ A. Jamil,²¹ C. Jessiman,² M.J. Jewell,¹⁵ A. Johnson,⁷ A. Karelin,⁵ L.J. Kaufman,^{7, f} T. Koffas,² R. Krücken,⁹ A. Kuchenkov,⁵ K.S. Kumar,^{22, g} Y. Lan,⁹ A. Larson,⁶ B.G. Lenardo,¹⁵ D.S. Leonard,²³ G.S. Li,^{15, h} S. Li,⁴ Z. Li,²¹ C. Licciardi,¹² Y.H. Lin,¹⁶ R. MacLellan,⁶ T. McElroy,⁸ T. Michel,¹ B. Mong,⁷ D.C. Moore,²¹ K. Murray,⁸ O. Njoya,²² O. Nusair,²⁰ A. Odian,⁷ I. Ostrovskiy,²⁰ A. Piepke,²⁰ A. Pocar,¹⁷ F. Retière,⁹ A.L. Robinson,¹² P.C. Rowson,⁷ D. Ruddell,¹³ J. Runge,³ S. Schmidt,¹ D. Sinclair,^{2,9} A.K. Soma,²⁰ V. Stekhanov,⁵ M. Tarka,¹⁷ J. Todd,¹¹ T. Tolba,¹⁰ T.I. Totev,⁸ B. Veenstra,² V. Veeraraghavan,²⁰ P. Vogel,²⁴ J.-L. Vuilleumier,²⁵ M. Wagenpfeil,¹ J. Watkins,² M. Weber,¹⁵ L.J. Wen,¹⁰ U. Wichoski,¹² G. Wrede,¹ S.X. Wu,¹⁵ Q. Xia,²¹ D.R. Yahne,¹¹ L. Yang,⁴ Y.-R. Yen,¹⁶ O.Ya. Zeldovich,⁵ and T. Ziegler¹ (EXO-200 Collaboration)

¹Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany ²Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada ³Department of Physics, Duke University, and Triangle Universities Nuclear Laboratory (TUNL), Durham, North Carolina 27708, USA ⁴Physics Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", 117218, Moscow, Russia ⁶Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ⁸ Physics Department, McGill University, Montreal H3A 2T8, Quebec, Canada ⁹ TRIUMF, Vancouver, British Columbia V6T 2A3, Canada ¹⁰Institute of High Energy Physics, Beijing 100049, China ¹¹Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA ¹²Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6, Canada ¹³Department of Physics and Physical Oceanography, University of North Carolina at Wilmington, Wilmington, NC 28403, USA ¹⁴Physics Department and CEEM, Indiana University, Bloomington, Indiana 47405, USA ¹⁵Physics Department, Stanford University, Stanford, California 94305, USA ¹⁶Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA ¹⁷ Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, MA 01003, USA ¹⁸ Technische Universität München, Physikdepartment and Excellence Cluster Universe, Garching 80805, Germany ¹⁹Physics Department, University of Maryland, College Park, Maryland 20742, USA ²⁰Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA ²¹ Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06511, USA ²² Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794, USA ²³IBS Center for Underground Physics, Daejeon 34126, Korea ²⁴Kellogg Lab, Caltech, Pasadena, California 91125, USA ²⁵LHEP, Albert Einstein Center, University of Bern, Bern CH-3012, Switzerland (Dated: October 21, 2019)

Phys. Rev. Lett. 123, 161802

EXO-200 final limit $T_{1/2}>3.5 \ 10^{25}$ years

Discovery, accelerated

June 8, 2023

Gallina, G., Guan, Y., Retiere, F. et al. *Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO.* Eur. Phys. J. C 82, 1125 (2022), https://arxiv.org/pdf/2209.07765.pdf

Modeling energy resolution: nEXO projection

$$\frac{\sigma_{n}}{\langle n \rangle} = \frac{\sqrt{\left(\frac{(1-\varepsilon_{p})n_{p}}{\varepsilon_{p}} + \frac{n_{p}}{\varepsilon_{p}} \cdot \frac{\sigma_{\Lambda}^{2}}{(1+\langle \Lambda \rangle)^{2}} + n_{p}^{2}\sigma_{lm}^{2}\right) + \left(\frac{n_{q}t}{\tau}\right)}{\left(\frac{n_{q}t}{\tau}\right)^{2}}}{\frac{\langle n \rangle}{\langle n \rangle}} = \frac{\sqrt{\left(\frac{(1-\varepsilon_{p})n_{p}}{\varepsilon_{p}} + \frac{n_{p}}{\varepsilon_{p}} \cdot \frac{\sigma_{\Lambda}^{2}}{(1+\langle \Lambda \rangle)^{2}} + n_{p}^{2}\sigma_{lm}^{2}\right) + \left(\frac{n_{q}t}{\tau}\right)}}{\frac{\langle n \rangle}{\langle n \rangle}} + \left(\frac{n_{q}t}{\tau}\right)^{2}} = \frac{\sqrt{\left(\frac{(1-\varepsilon_{p})n_{p}}{\varepsilon_{p}} + \frac{n_{p}}{\varepsilon_{p}} \cdot \frac{\sigma_{\Lambda}^{2}}{(1+\langle \Lambda \rangle)^{2}} + n_{p}^{2}\sigma_{lm}^{2}\right) + \left(\frac{n_{q}t}{\tau}\right)}}{\frac{\langle n \rangle}{\langle n \rangle}} + \left(\frac{n_{q}t}{\tau}\right)^{2}} + \frac{n_{q}t}{\langle n \rangle} + \left(\frac{n_{q}t}{\tau}\right)^{2}} + \frac{n_{q}t}{\langle n \rangle} + \frac{$$

- Assumptions
 - Negligible intrinsic light+charge fluctuations
 - Photo-detector noise negligible
 - High gain
 - No external cross-talk considered

Liquid Xenon scintillation at ~175nm

- Easiest Noble-gas liquid scintillation to detect
- Above SiO2 cut-off
 - Can still use standard silicon technology
- Bright and short flash
 - Number of photons produced ~91,000 at 2.458 MeV
 - All photons emitted within 100ns

Photon detection in nEXO

- Energy resolution dominated by light
 - Need 3% efficiency of detecting scintillation photons for 1 % energy resolution
 - With negligible noise for light detection
- Need at least 4 m² of detection area
- Need reflective electrodes

SiPMs, baseline photo-detector solution for

nEXO

High gain (low noise)

Large manufacturing capabilities

But efficiency and radioactivity
 need work - Photons

Two SiPM options for nEXO (baseline)

- Fondazione Bruno Kessler
 - Development chain driven by nEXO:
 - VUV-HD1
 - VUV-HD2, 1x1cm², did not work
 - VUV-HD3, 6x6mm², good performances
 - VUV-HD4, 2022-2023, 1x1cm², does not seem to work well

- Hamamatsu
 - VUV4 Multi-Pixel Photon Counter
 - Single 6x6mm². Appears to have worse performance
 - Quad 2x2 6x6mm²
 - 1x1cm² integrated on nEXO tile

SiPM for lowest radioactivity content

	²³⁸ U	²³² Th	⁴⁰ K
Prelim. nEXO requirements for 4m ²	< 0.1 nBq/cm ²	<1 nBq/cm ²	< 10 nBq/cm ²
FBK SiPM (bare wafers) ^A	<0.4 nBq/cm ²	~0.6 nBq/cm ²	~3 nBq/cm ²
SensL SiPM (packaged) ^B	<1.1 mBq/cm ²	<33 μBq/cm ²	<69 μBq/cm ²
Hamamatsu PMT R11410-21 ^c	<0.4 mBq/cm ²	0.016 mBq/cm ²	0.37 mBq/cm ²

^A Counting at U.Alabama after nuclear activation at MIT

^CE. Aprile et al. Material radioassay and selection for the XENON1T dark matter experiment. Eur. Phys. J., C77(12):890, 2017, https://arxiv.org/pdf/1705.01828.pdf

PMT type	Normalized activity [mBq/cm ²]				Ref.		
	$^{238}\mathrm{U}$	$^{226}\mathrm{Ra}$	$^{228}\mathrm{Th}$	$^{235}\mathrm{U}$	$^{40}{ m K}$	$^{60}\mathrm{Co}$	
R11410-21	< 0.4	0.016(3)	0.012(3)	0.011(3)	0.37(6)	0.023(3)	this work
R11410-20	< 0.56	< 0.03	0.028(6)	< 0.025	0.37(6)	0.040(6)	this work
R11410-10	< 3.0	< 0.075	< 0.08	< 0.13	0.4(1)	0.11(2)	[20]
R11410-10 (PandaX)	_	< 0.02	< 0.02	0.04(4)	0.5(3)	0.11(1)	[12]
R11410-10 (LUX)	< 0.19	< 0.013	< 0.009	_	< 0.26	0.063(6)	[21]
R11410	1.6(6)	0.19(2)	0.09(2)	0.10(2)	1.6(3)	0.26(2)	[20]
R8778 (LUX)	< 1.4	0.59(4)	0.17(2)		4.1(1)	0.160(6)	[21]
R8520	< 0.33	0.029(2)	0.026(2)	0.009(2)	1.8(2)	0.13(1)	[20]

b NEXT Ge counting. http://arxiv.org/abs/1411.1433

VUV light detection challenges

Reflections

Shallow absorption depth

June 8, 2023 14

Measuring reflections

- In vacuum, oscillation due to the SiO2 layer (~1.5um for FBK)
 - Expected to disappear in Lxe as SiO2 and LXe have roughly the same n
- FBK matches expectation
- Hamamatsu does not
 - Is the SiO2 less transparent that expected?
 - May be batch specific

Gallina, G., Guan, Y., Retiere, F. et al. *Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO*. Eur. Phys. J. C 82, 1125 (2022), https://arxiv.org/pdf/2209.07765.pdf

Corresponding oscillation in efficiency

Systematic matching of reflectivity and efficiency still to be done

Reflectivity in LXe

Done using U.Muenster setup Extrapolation from vacuum to Lxe not so easy

Corresponding efficiency in liquid Xenon

- Some difficulty in measuring efficiency in liquid Xenon
- Any issues?
 - MEG-II lower efficiency + degradation?

K. leki et al., Large-area MPPC with enhanced VUV sensitivity for liquid xenon scintillation detector, NIM A, https://arxiv.org/abs/1809.08701

SiPM nuisances

- Dark noise
 - Thermal. At room temperature ~100kHz/mm²
- Carrier trap and release => afterpulsing
- Light emission during avalanche
 - Direct cross-talk
 - Delayed cross-talk
 - External cross-talk, aka hit another SiPM
- Large capacitance ~50pF/mm²

Fig. 1. Schematic representation of the internal structure of FBK Silicon photomultiplier, made in RGB-HD or RGB-UHD technology, with deep trenches between cells (SPADs).

Gallina, G., Guan, Y., Retiere, F. et al. *Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO.* Eur. Phys. J. C 82, 1125 (2022), https://arxiv.org/pdf/2209.07765.pdf

Correlated avalanches

FBKDominated by cross-talk (prompt additional avalanche)

Hamamatsu

Dominated by after-pulsing Significant batch to batch variation

Discovery, accelerated

Photo-detector performance comparison

Parameters at LXe temperature for cm ² scale channel size	PMT R11410- 21 ^a	FBK VUV-HD3 @ 3V ^b	HPK VUV4 MPPC @ 3V ^b
Single channel active area	128 cm ²	25 cm ^{2 c}	6 cm ^{2 d}
Efficiency at 175nm	34%	24.4 ± 1.4%	20.5 ± 1.1%
Single avalanche charge resolution	25%	5% ^c	5% ^d
Dark noise rate (Hz/cm²)	1.3 ± 0.4	19 ± 1	35 ± 1
# correlated avalanche in 1 μs	0.02 ± 0.005	0.23 ± 0.06	0.06 ± 0.02
# Photons emitted per avalanche	N/A	1 ± 0.5	1 ± 0.5
Single photon timing resolution, σ	3.9 ± 0.6ns	~10 ns ^c	~100 ns ^d
Radiopurity per active area	~mBq/cm ²	Medium ^c	< 10 nBq/cm ^{2 d}
Power consumption in LXe	0.75 mW/cm ²	2 mW/cm ^{2 c}	2 mW/cm ^{2 d}

^a Massaged from P. Barrow et al., https://arxiv.org/pdf/1609.01654.pdf

^b G.Gallina et al., https://arxiv.org/pdf/2209.07765.pdf

^c DarkSide-20k readout scheme for 25 cm² channel size

d nEXO readout scheme for 6 cm² channel size (can be applied to FBK)

Open questions with light detection

- Light production
 - Intrinsic fluctuations really negligible?
 - Can Cerenkov light be used for anything?
 - Any other wavelengths?
- Issues
 - Is external cross-talk a problem?
 - Do we really understand the optics in LXe? May be material dependent
- Improving performances
 - Reducing dark noise. Not important for nEXO but can be for DM experiments
 - Improving efficiency
 - Transition for analog to digital SiPM

Imaging mode

Spectroscopy mode

FBK VUV-HD3 emission spectrum In NA < 0.45

Yield Photons into a 0.45NA Objective vs V_{ov}

Spectrum at source assuming isotropic emission

HPK VUV4 (Old)

FBK VUVHD3

Externa cross-talk seen by LoLX phase 1

Probability of 1 avalanche producing another one

Preliminary result: 3 ± 1% @ 4V and 5 ± 1 % @ 5V

Working on investigating match with simulations

Should not be a major worry for nEXO

Open questions with light detection

- Light production
 - Intrinsic fluctuations really negligible?
 - Can Cerenkov light be used for anything?
 - Any other wavelengths?
- Issues
 - Is external cross-talk a problem?
 - Do we really understand the optics in LXe? May be material dependent
- Improving performances
 - Reducing dark noise. Not important for nEXO but can be for DM experiments
 - Improving efficiency
 - Transition for analog to digital SiPM

All processes in Lxe probed by the light only liquid Xenon experiment

LoLX phase 1 to phase 2

Unfiltered SiPMs. Was expecting twice as much light

LoLX phase 1

- data with ⁹⁰Sr
- Too much light > 225nm: fluorescence established
- Not enough scintillation: bad xenon or low SiPM efficiency?
- External crosstalk paper first publication

LoLX phase 2

- Address efficiency question first: HPK SiPM + FBK SiPM + PMT
- Then back to Cerenkov
- Light only energy resolution
- <1ns scintillation characterization

June 8, 2023

Open questions with light detection

- Light production
 - Intrinsic fluctuations really negligible?
 - Can Cerenkov light be used for anything?
 - Any other wavelengths?
- Issues
 - Is external cross-talk a problem?
 - Do we really understand the optics in LXe? May be material dependent
- Improving performances
 - Reducing dark noise. Not important for nEXO but can be for DM experiments
 - Improving efficiency
 - Transition for analog to digital SiPM

Improving efficiency

- Ultra-shallow surface contact
 - nm scale
 - Epitaxial growth
 - Pure-Boron
 - ...
- Anti-reflective coating
 - 1D conventional thin film is tricky due to lack of materials
 - Go 3D Black silicon. Long term stability is question mark
- Do all that while reducing dark noise!

Published in *Physical Review Letters* 8.9.2020. Please cite: Phys. Rev. Lett. 125(11), 117702 (2020), doi: 10.1103/PhysRevLett.125.117702

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.117702

Open questions with light detection

- Light production
 - Intrinsic fluctuations really negligible?
 - Can Cerenkov light be used for anything?
 - Any other wavelengths?
- Issues
 - Is external cross-talk a problem?
 - Do we really understand the optics in LXe? May be material dependent
- Improving performances
 - Reducing dark noise. Not important for nEXO but can be for DM experiments
 - Improving efficiency
 - Transition for analog to digital SiPM (non nEXO baseline)

***TRIUMF**

Photon time

stamp

Tag for every photon

Or some simpler aggregate

Discovery, accelerated

Q

Quench

Digital processing

2D SPAD @ Heidelberg

- 2D SPAD array designed by Heidelberg built by Fraunhofer IMS
- The good
 - Single chip doing everything
 - Dark noise rate of 0.02 Hz/mm²
- The bad
 - Some loss of active area
 - No VUV sensitivity... yet

Digital SiPMs for DARWIN

Michael Keller, Peter Fischer, Robert Zimmermann, Michael Ritzert – University of Heidelberg

DARWIN Collaboration Meeting 2023 at University of Heidelberg

June 8, 2023

34

2D SPAD array for DARWIN

Digital SiPMs for DARWIN

Michael Keller, Peter Fischer, Robert Zimmermann, Michael Ritzert – University of Heidelberg

DARWIN Collaboration Meeting 2023 at University of Heidelberg

Photon to Digital Converter

- Designed by Sherbrooke (Canada) and built at Teledyne-DALSA (Canada)
- The good
 - Can optimize sensor and readout separately
 - Excellent fill factor possibly 100% in back-side configuration
- The bad
 - Tricky to build

Photon to Digital Converter – complete system

Current development state

FPGA-based Controller ASIC-based Controller TOP BOT 57 mm

Summary: photo-detector performance comparison

2 possible solutions for nEXO

Parameters at LXe temperature for cm ² scale channel size	PMT R11410- 21 ^a	FBK VUV-HD3 @ 3V ^b	HPK VUV4 MPPC @ 3V ^b	Heidelberg 2D SPAD array	Sherbrooke 3D SPAD array
Efficiency at 175nm	34%	24.4±1.4%→?	20.5±1.1%→?	0→25%→?	0→25%→?
Single avalanche charge resolution	25%	5% ^c	5% ^d	N/A	N/A
Dark noise rate (Hz/cm²)	0.23 ± 0.07	19 ± 1	35 ± 1	2	1000
# correlated avalanche in 1 μs	0.02 ± 0.005	0.23 ± 0.06	0.06 ± 0.02	AP=0, XT=?	AP=0, XT=?
# Photons emitted per avalanche	N/A	1 ± 0.5	1 ± 0.5	?	?
Single photon timing resolution	3.9 ± 0.6ns	~10 ns ^c	~100 ns ^d	100ps	100ps
Radiopurity per active area	~mBq/cm ²	Medium ^c	< 10 nBq/cm ^{2 d}	~nBq/cm²	~nBq/cm ²
Power consumption in LXe	0.13 mW/cm ²	2 mW/cm ^{2 c}	2 mW/cm ^{2 d}	< 1mW/cm ²	< 1mW/cm ²

^a Massaged from P. Barrow et al., https://arxiv.org/pdf/1609.01654.pdf

^b G.Gallina et al., https://arxiv.org/pdf/2209.07765.pdf

^c DarkSide-20k readout scheme for 25cm² channel size

d nEXO readout scheme for 6cm² channel size (can be applied to FBK)

Outlook – 3D integration for other things

EXO-200. Modeling energy resolution

 EXO-200 data shows very strong (98% correlation) between recombination (e- loss) and increase scintillation

EXO-200 energy resolution dominated by APD electronics noise

Or are they? What about light emission into the detector?

- Light emission assumptions:
 - At p-n junction maximum field
 - Isotropic
- External cross-talk
 - Photon escaping the SiPM surface
- Internal cross-talk
 - Photons being absorbed in a neighboring SPAD
- We measure photons escaping with objective acceptance

43

Technical dtour: SPAD light emission

Microscope for the Injection and Emission of Light

- Cryogenic stage: 80-290K
- Laser injection at 405nm
- Record SiPM signal with waveform digitizer
 - Assess the probability that the laser trigger, an avalanche

Technical detour: SPAD light emission

Imaging re-emitted light

Spectra

Acceptance:

Objective NA=0.45, i.e. θ < 26.7°

Simulation shows that acceptance is about 10% of total

