Light detection in liquid Xenon for nEXO and beyond Fabrice Retiere for the nEXO collaboration #### ***TRIUMF** nEXO for 0νββ #### **EXO-200** - Double sided Time Projection chamber - Optically transparent cathode in the center - 15 cm drift length - Charge detection by crossedwires - Light detection by Avalanche photo-diodes - And teflon "light guide" #### Optimum energy estimator Optimum estimator is linear combination of ionization + scintillation quanta Cancels fluctuation in relative quanta production #### EXO-200 final - Operation ended in 2018 - Decommissioning essentially completed arXiv:1906.02723v3 • Full analysis paper out #### Search for Neutrinoless Double-Beta Decay with the Complete EXO-200 Dataset G. Anton,¹ I. Badhrees,^{2, a} P.S. Barbeau,³ D. Beck,⁴ V. Belov,⁵ T. Bhatta,⁶ M. Breidenbach,⁷ T. Brunner,^{8,9} G.F. Cao,¹⁰ W.R. Cen,¹⁰ C. Chambers,^{11, b} B. Cleveland,^{12, c} M. Coon,⁴ A. Craycraft,¹¹ T. Daniels,¹³ M. Danilov,^{5, d} L. Darroch,⁸ S.J. Daugherty,¹⁴ J. Davis,⁷ S. Delaquis,^{7, e} A. Der Mesrobian-Kabakian,¹² R. DeVoe,¹⁵ J. Dilling,⁹ A. Dolgolenko,⁵ M.J. Dolinski,¹⁶ J. Echevers,⁴ W. Fairbank Jr.,¹¹ D. Fairbank,¹¹ J. Farine,¹² S. Feyzbakhsh,¹⁷ P. Fierlinger,¹⁸ D. Fudenberg,¹⁵ P. Gautam,¹⁶ R. Gornea,^{2,9} G. Gratta,¹⁵ C. Hall,¹⁹ E.V. Hansen,¹⁶ J. Hoessl,¹ P. Hufschmidt,¹ M. Hughes,²⁰ A. Iverson,¹¹ A. Jamil,²¹ C. Jessiman,² M.J. Jewell,¹⁵ A. Johnson,⁷ A. Karelin,⁵ L.J. Kaufman,^{7, f} T. Koffas,² R. Krücken,⁹ A. Kuchenkov,⁵ K.S. Kumar,^{22, g} Y. Lan,⁹ A. Larson,⁶ B.G. Lenardo,¹⁵ D.S. Leonard,²³ G.S. Li,^{15, h} S. Li,⁴ Z. Li,²¹ C. Licciardi,¹² Y.H. Lin,¹⁶ R. MacLellan,⁶ T. McElroy,⁸ T. Michel,¹ B. Mong,⁷ D.C. Moore,²¹ K. Murray,⁸ O. Njoya,²² O. Nusair,²⁰ A. Odian,⁷ I. Ostrovskiy,²⁰ A. Piepke,²⁰ A. Pocar,¹⁷ F. Retière,⁹ A.L. Robinson,¹² P.C. Rowson,⁷ D. Ruddell,¹³ J. Runge,³ S. Schmidt,¹ D. Sinclair,^{2,9} A.K. Soma,²⁰ V. Stekhanov,⁵ M. Tarka,¹⁷ J. Todd,¹¹ T. Tolba,¹⁰ T.I. Totev,⁸ B. Veenstra,² V. Veeraraghavan,²⁰ P. Vogel,²⁴ J.-L. Vuilleumier,²⁵ M. Wagenpfeil,¹ J. Watkins,² M. Weber,¹⁵ L.J. Wen,¹⁰ U. Wichoski,¹² G. Wrede,¹ S.X. Wu,¹⁵ Q. Xia,²¹ D.R. Yahne,¹¹ L. Yang,⁴ Y.-R. Yen,¹⁶ O.Ya. Zeldovich,⁵ and T. Ziegler¹ (EXO-200 Collaboration) ¹Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany ²Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada ³Department of Physics, Duke University, and Triangle Universities Nuclear Laboratory (TUNL), Durham, North Carolina 27708, USA ⁴Physics Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", 117218, Moscow, Russia ⁶Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ⁸ Physics Department, McGill University, Montreal H3A 2T8, Quebec, Canada ⁹ TRIUMF, Vancouver, British Columbia V6T 2A3, Canada ¹⁰Institute of High Energy Physics, Beijing 100049, China ¹¹Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA ¹²Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6, Canada ¹³Department of Physics and Physical Oceanography, University of North Carolina at Wilmington, Wilmington, NC 28403, USA ¹⁴Physics Department and CEEM, Indiana University, Bloomington, Indiana 47405, USA ¹⁵Physics Department, Stanford University, Stanford, California 94305, USA ¹⁶Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA ¹⁷ Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, MA 01003, USA ¹⁸ Technische Universität München, Physikdepartment and Excellence Cluster Universe, Garching 80805, Germany ¹⁹Physics Department, University of Maryland, College Park, Maryland 20742, USA ²⁰Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA ²¹ Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06511, USA ²² Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794, USA ²³IBS Center for Underground Physics, Daejeon 34126, Korea ²⁴Kellogg Lab, Caltech, Pasadena, California 91125, USA ²⁵LHEP, Albert Einstein Center, University of Bern, Bern CH-3012, Switzerland (Dated: October 21, 2019) Phys. Rev. Lett. 123, 161802 ## EXO-200 final limit $T_{1/2}>3.5 \ 10^{25}$ years Discovery, accelerated June 8, 2023 Gallina, G., Guan, Y., Retiere, F. et al. *Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO.* Eur. Phys. J. C 82, 1125 (2022), https://arxiv.org/pdf/2209.07765.pdf ## Modeling energy resolution: nEXO projection $$\frac{\sigma_{n}}{\langle n \rangle} = \frac{\sqrt{\left(\frac{(1-\varepsilon_{p})n_{p}}{\varepsilon_{p}} + \frac{n_{p}}{\varepsilon_{p}} \cdot \frac{\sigma_{\Lambda}^{2}}{(1+\langle \Lambda \rangle)^{2}} + n_{p}^{2}\sigma_{lm}^{2}\right) + \left(\frac{n_{q}t}{\tau}\right)}{\left(\frac{n_{q}t}{\tau}\right)^{2}}}{\frac{\langle n \rangle}{\langle n \rangle}} = \frac{\sqrt{\left(\frac{(1-\varepsilon_{p})n_{p}}{\varepsilon_{p}} + \frac{n_{p}}{\varepsilon_{p}} \cdot \frac{\sigma_{\Lambda}^{2}}{(1+\langle \Lambda \rangle)^{2}} + n_{p}^{2}\sigma_{lm}^{2}\right) + \left(\frac{n_{q}t}{\tau}\right)}}{\frac{\langle n \rangle}{\langle n \rangle}} + \left(\frac{n_{q}t}{\tau}\right)^{2}} = \frac{\sqrt{\left(\frac{(1-\varepsilon_{p})n_{p}}{\varepsilon_{p}} + \frac{n_{p}}{\varepsilon_{p}} \cdot \frac{\sigma_{\Lambda}^{2}}{(1+\langle \Lambda \rangle)^{2}} + n_{p}^{2}\sigma_{lm}^{2}\right) + \left(\frac{n_{q}t}{\tau}\right)}}{\frac{\langle n \rangle}{\langle n \rangle}} + \left(\frac{n_{q}t}{\tau}\right)^{2}} + \frac{n_{q}t}{\langle n \rangle} + \left(\frac{n_{q}t}{\tau}\right)^{2}} + \frac{n_{q}t}{\langle n \rangle} \frac{$$ - Assumptions - Negligible intrinsic light+charge fluctuations - Photo-detector noise negligible - High gain - No external cross-talk considered #### Liquid Xenon scintillation at ~175nm - Easiest Noble-gas liquid scintillation to detect - Above SiO2 cut-off - Can still use standard silicon technology - Bright and short flash - Number of photons produced ~91,000 at 2.458 MeV - All photons emitted within 100ns #### Photon detection in nEXO - Energy resolution dominated by light - Need 3% efficiency of detecting scintillation photons for 1 % energy resolution - With negligible noise for light detection - Need at least 4 m² of detection area - Need reflective electrodes ## SiPMs, baseline photo-detector solution for nEXO High gain (low noise) Large manufacturing capabilities But efficiency and radioactivity need work - Photons ### Two SiPM options for nEXO (baseline) - Fondazione Bruno Kessler - Development chain driven by nEXO: - VUV-HD1 - VUV-HD2, 1x1cm², did not work - VUV-HD3, 6x6mm², good performances - VUV-HD4, 2022-2023, 1x1cm², does not seem to work well - Hamamatsu - VUV4 Multi-Pixel Photon Counter - Single 6x6mm². Appears to have worse performance - Quad 2x2 6x6mm² - 1x1cm² integrated on nEXO tile #### SiPM for lowest radioactivity content | | ²³⁸ U | ²³² Th | ⁴⁰ K | |---|---------------------------|---------------------------|--------------------------| | Prelim. nEXO requirements for 4m ² | < 0.1 nBq/cm ² | <1 nBq/cm ² | < 10 nBq/cm ² | | FBK SiPM (bare wafers) ^A | <0.4 nBq/cm ² | ~0.6 nBq/cm ² | ~3 nBq/cm ² | | SensL SiPM (packaged) ^B | <1.1 mBq/cm ² | <33 μBq/cm ² | <69 μBq/cm ² | | Hamamatsu PMT R11410-21 ^c | <0.4 mBq/cm ² | 0.016 mBq/cm ² | 0.37 mBq/cm ² | ^A Counting at U.Alabama after nuclear activation at MIT ^CE. Aprile et al. Material radioassay and selection for the XENON1T dark matter experiment. Eur. Phys. J., C77(12):890, 2017, https://arxiv.org/pdf/1705.01828.pdf | PMT type | Normalized activity [mBq/cm ²] | | | | Ref. | | | |--------------------|--|---------------------|---------------------|--------------------|---------------|--------------------|-----------| | | $^{238}\mathrm{U}$ | $^{226}\mathrm{Ra}$ | $^{228}\mathrm{Th}$ | $^{235}\mathrm{U}$ | $^{40}{ m K}$ | $^{60}\mathrm{Co}$ | | | R11410-21 | < 0.4 | 0.016(3) | 0.012(3) | 0.011(3) | 0.37(6) | 0.023(3) | this work | | R11410-20 | < 0.56 | < 0.03 | 0.028(6) | < 0.025 | 0.37(6) | 0.040(6) | this work | | R11410-10 | < 3.0 | < 0.075 | < 0.08 | < 0.13 | 0.4(1) | 0.11(2) | [20] | | R11410-10 (PandaX) | _ | < 0.02 | < 0.02 | 0.04(4) | 0.5(3) | 0.11(1) | [12] | | R11410-10 (LUX) | < 0.19 | < 0.013 | < 0.009 | _ | < 0.26 | 0.063(6) | [21] | | R11410 | 1.6(6) | 0.19(2) | 0.09(2) | 0.10(2) | 1.6(3) | 0.26(2) | [20] | | R8778 (LUX) | < 1.4 | 0.59(4) | 0.17(2) | | 4.1(1) | 0.160(6) | [21] | | R8520 | < 0.33 | 0.029(2) | 0.026(2) | 0.009(2) | 1.8(2) | 0.13(1) | [20] | b NEXT Ge counting. http://arxiv.org/abs/1411.1433 #### VUV light detection challenges Reflections Shallow absorption depth June 8, 2023 14 #### Measuring reflections - In vacuum, oscillation due to the SiO2 layer (~1.5um for FBK) - Expected to disappear in Lxe as SiO2 and LXe have roughly the same n - FBK matches expectation - Hamamatsu does not - Is the SiO2 less transparent that expected? - May be batch specific Gallina, G., Guan, Y., Retiere, F. et al. *Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO*. Eur. Phys. J. C 82, 1125 (2022), https://arxiv.org/pdf/2209.07765.pdf ## Corresponding oscillation in efficiency Systematic matching of reflectivity and efficiency still to be done #### Reflectivity in LXe Done using U.Muenster setup Extrapolation from vacuum to Lxe not so easy #### Corresponding efficiency in liquid Xenon - Some difficulty in measuring efficiency in liquid Xenon - Any issues? - MEG-II lower efficiency + degradation? K. leki et al., Large-area MPPC with enhanced VUV sensitivity for liquid xenon scintillation detector, NIM A, https://arxiv.org/abs/1809.08701 #### SiPM nuisances - Dark noise - Thermal. At room temperature ~100kHz/mm² - Carrier trap and release => afterpulsing - Light emission during avalanche - Direct cross-talk - Delayed cross-talk - External cross-talk, aka hit another SiPM - Large capacitance ~50pF/mm² Fig. 1. Schematic representation of the internal structure of FBK Silicon photomultiplier, made in RGB-HD or RGB-UHD technology, with deep trenches between cells (SPADs). Gallina, G., Guan, Y., Retiere, F. et al. *Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO.* Eur. Phys. J. C 82, 1125 (2022), https://arxiv.org/pdf/2209.07765.pdf #### Correlated avalanches **FBK**Dominated by cross-talk (prompt additional avalanche) #### Hamamatsu Dominated by after-pulsing Significant batch to batch variation Discovery, accelerated #### Photo-detector performance comparison | Parameters at LXe temperature for cm ² scale channel size | PMT R11410-
21 ^a | FBK VUV-HD3
@ 3V ^b | HPK VUV4
MPPC @ 3V ^b | |--|--------------------------------|----------------------------------|------------------------------------| | Single channel active area | 128 cm ² | 25 cm ^{2 c} | 6 cm ^{2 d} | | Efficiency at 175nm | 34% | 24.4 ± 1.4% | 20.5 ± 1.1% | | Single avalanche charge resolution | 25% | 5% ^c | 5% ^d | | Dark noise rate (Hz/cm²) | 1.3 ± 0.4 | 19 ± 1 | 35 ± 1 | | # correlated avalanche in 1 μs | 0.02 ± 0.005 | 0.23 ± 0.06 | 0.06 ± 0.02 | | # Photons emitted per avalanche | N/A | 1 ± 0.5 | 1 ± 0.5 | | Single photon timing resolution, σ | 3.9 ± 0.6ns | ~10 ns ^c | ~100 ns ^d | | Radiopurity per active area | ~mBq/cm ² | Medium ^c | < 10 nBq/cm ^{2 d} | | Power consumption in LXe | 0.75 mW/cm ² | 2 mW/cm ^{2 c} | 2 mW/cm ^{2 d} | ^a Massaged from P. Barrow et al., https://arxiv.org/pdf/1609.01654.pdf ^b G.Gallina et al., https://arxiv.org/pdf/2209.07765.pdf ^c DarkSide-20k readout scheme for 25 cm² channel size d nEXO readout scheme for 6 cm² channel size (can be applied to FBK) ### Open questions with light detection - Light production - Intrinsic fluctuations really negligible? - Can Cerenkov light be used for anything? - Any other wavelengths? - Issues - Is external cross-talk a problem? - Do we really understand the optics in LXe? May be material dependent - Improving performances - Reducing dark noise. Not important for nEXO but can be for DM experiments - Improving efficiency - Transition for analog to digital SiPM #### **Imaging mode** #### **Spectroscopy mode** FBK VUV-HD3 emission spectrum In NA < 0.45 #### Yield Photons into a 0.45NA Objective vs V_{ov} ### Spectrum at source assuming isotropic emission HPK VUV4 (Old) FBK VUVHD3 ## Externa cross-talk seen by LoLX phase 1 Probability of 1 avalanche producing another one Preliminary result: 3 ± 1% @ 4V and 5 ± 1 % @ 5V Working on investigating match with simulations Should not be a major worry for nEXO ## Open questions with light detection - Light production - Intrinsic fluctuations really negligible? - Can Cerenkov light be used for anything? - Any other wavelengths? - Issues - Is external cross-talk a problem? - Do we really understand the optics in LXe? May be material dependent - Improving performances - Reducing dark noise. Not important for nEXO but can be for DM experiments - Improving efficiency - Transition for analog to digital SiPM All processes in Lxe probed by the light only liquid Xenon experiment ## LoLX phase 1 to phase 2 Unfiltered SiPMs. Was expecting twice as much light #### LoLX phase 1 - data with ⁹⁰Sr - Too much light > 225nm: fluorescence established - Not enough scintillation: bad xenon or low SiPM efficiency? - External crosstalk paper first publication #### LoLX phase 2 - Address efficiency question first: HPK SiPM + FBK SiPM + PMT - Then back to Cerenkov - Light only energy resolution - <1ns scintillation characterization June 8, 2023 ## Open questions with light detection - Light production - Intrinsic fluctuations really negligible? - Can Cerenkov light be used for anything? - Any other wavelengths? - Issues - Is external cross-talk a problem? - Do we really understand the optics in LXe? May be material dependent - Improving performances - Reducing dark noise. Not important for nEXO but can be for DM experiments - Improving efficiency - Transition for analog to digital SiPM ### Improving efficiency - Ultra-shallow surface contact - nm scale - Epitaxial growth - Pure-Boron - ... - Anti-reflective coating - 1D conventional thin film is tricky due to lack of materials - Go 3D Black silicon. Long term stability is question mark - Do all that while reducing dark noise! Published in *Physical Review Letters* 8.9.2020. Please cite: Phys. Rev. Lett. 125(11), 117702 (2020), doi: 10.1103/PhysRevLett.125.117702 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.117702 ### Open questions with light detection - Light production - Intrinsic fluctuations really negligible? - Can Cerenkov light be used for anything? - Any other wavelengths? - Issues - Is external cross-talk a problem? - Do we really understand the optics in LXe? May be material dependent - Improving performances - Reducing dark noise. Not important for nEXO but can be for DM experiments - Improving efficiency - Transition for analog to digital SiPM (non nEXO baseline) #### ***TRIUMF** Photon time stamp Tag for every photon Or some simpler aggregate Discovery, accelerated Q Quench **Digital processing** #### 2D SPAD @ Heidelberg - 2D SPAD array designed by Heidelberg built by Fraunhofer IMS - The good - Single chip doing everything - Dark noise rate of 0.02 Hz/mm² - The bad - Some loss of active area - No VUV sensitivity... yet #### Digital SiPMs for DARWIN Michael Keller, Peter Fischer, Robert Zimmermann, Michael Ritzert – University of Heidelberg DARWIN Collaboration Meeting 2023 at University of Heidelberg June 8, 2023 34 #### 2D SPAD array for DARWIN #### Digital SiPMs for DARWIN Michael Keller, Peter Fischer, Robert Zimmermann, Michael Ritzert – University of Heidelberg DARWIN Collaboration Meeting 2023 at University of Heidelberg #### Photon to Digital Converter - Designed by Sherbrooke (Canada) and built at Teledyne-DALSA (Canada) - The good - Can optimize sensor and readout separately - Excellent fill factor possibly 100% in back-side configuration - The bad - Tricky to build #### Photon to Digital Converter – complete system ## Current development state **FPGA-based Controller ASIC-based Controller** TOP BOT 57 mm ## Summary: photo-detector performance comparison 2 possible solutions for nEXO | Parameters at LXe temperature for cm ² scale channel size | PMT R11410-
21 ^a | FBK VUV-HD3
@ 3V ^b | HPK VUV4
MPPC @ 3V ^b | Heidelberg 2D
SPAD array | Sherbrooke
3D SPAD array | |--|--------------------------------|----------------------------------|------------------------------------|-----------------------------|-----------------------------| | Efficiency at 175nm | 34% | 24.4±1.4%→? | 20.5±1.1%→? | 0→25%→? | 0→25%→? | | Single avalanche charge resolution | 25% | 5% ^c | 5% ^d | N/A | N/A | | Dark noise rate (Hz/cm²) | 0.23 ± 0.07 | 19 ± 1 | 35 ± 1 | 2 | 1000 | | # correlated avalanche in 1 μs | 0.02 ± 0.005 | 0.23 ± 0.06 | 0.06 ± 0.02 | AP=0, XT=? | AP=0, XT=? | | # Photons emitted per avalanche | N/A | 1 ± 0.5 | 1 ± 0.5 | ? | ? | | Single photon timing resolution | 3.9 ± 0.6ns | ~10 ns ^c | ~100 ns ^d | 100ps | 100ps | | Radiopurity per active area | ~mBq/cm ² | Medium ^c | < 10 nBq/cm ^{2 d} | ~nBq/cm² | ~nBq/cm ² | | Power consumption in LXe | 0.13 mW/cm ² | 2 mW/cm ^{2 c} | 2 mW/cm ^{2 d} | < 1mW/cm ² | < 1mW/cm ² | ^a Massaged from P. Barrow et al., https://arxiv.org/pdf/1609.01654.pdf ^b G.Gallina et al., https://arxiv.org/pdf/2209.07765.pdf ^c DarkSide-20k readout scheme for 25cm² channel size d nEXO readout scheme for 6cm² channel size (can be applied to FBK) #### Outlook – 3D integration for other things #### EXO-200. Modeling energy resolution EXO-200 data shows very strong (98% correlation) between recombination (e- loss) and increase scintillation EXO-200 energy resolution dominated by APD electronics noise ## Or are they? What about light emission into the detector? - Light emission assumptions: - At p-n junction maximum field - Isotropic - External cross-talk - Photon escaping the SiPM surface - Internal cross-talk - Photons being absorbed in a neighboring SPAD - We measure photons escaping with objective acceptance 43 #### **Technical dtour: SPAD light emission** ## Microscope for the Injection and Emission of Light - Cryogenic stage: 80-290K - Laser injection at 405nm - Record SiPM signal with waveform digitizer - Assess the probability that the laser trigger, an avalanche #### **Technical detour: SPAD light emission** ## Imaging re-emitted light #### Spectra Acceptance: Objective NA=0.45, i.e. θ < 26.7° Simulation shows that acceptance is about 10% of total