

Development of a high pressure single-anode radial TPC for the search of 2βOv decays

P. Lautridou

The R&D R2D2 collaboration

LP2iB, Univ. Bordeaux, CNRS/IN2P3, Fr CPPM, Univ. Aix-Marseille, CNRS/IN2P3, Fr IRFU, CEA, Univ. Paris-Saclay, Fr
LSM, Univ. Grenoble-Alpes, CNRS/IN2P3, Fr
School of Physics and Astronomy, University of Birmingham, UK
SUBATECH, IMT-Atlantique, Univ. Nantes, CNRS/IN2P3, Fr

(a know-how from NEMO and NEWS-G)

Motivations

NEWS-G showed that the Spherical Proportional Counter (SPC)

is very attractive: (cf. Conf. ICHEP2022, UCLA-DM2013, TMEX2023, Blois2022....)

- Gain up to 10⁴
- Low detection threshold (down to single electron). Good energy resolution (12% @ 2.6 KeV). Discrimination from surface and bulk interactions

For BB0v decays

Our preliminary simulations indicated that an SPC filled with pressurized 136Xe could provide appealing performances

JINST 13 (2018) no.01, P01009

Provided that the experimental constraints can actually be overcome

- Energy resolution of 1% FWHM @ QBB of 2.458 MeV.
- Operation with Xe at 40 bars.

that the scalability of such a detector is possible

Up to a ton of Xe gas ($\sim 1-2 \text{ m}^3$ at 40 bars).

With an extreme reduction of the radioactive background.

Our approach

- 1) A central concern: the reduction of the near background => Use of the simplest and lightest possible structure in terms of mechanics and sensor.
 - => Choice of a high pressure single anode radial TPC
- 2) Energy resolution of 1% FWHM
 - 3) Track localization
 - 4) 2-tracks recognition (for the background and function of pressure for 2β)

Additional assets for background rejection

Studied configurations

- SPC (Spherical Prop. Counter) 1/r² field
- CPC (Cylindrical Prop. Counter) 1/r field
- Proportional / ionization modes
- Point-like / long tracks (function of pressure)

(Final objective is 0.5 m in radius and 40 bars of Xe)

Detectors setup

Test facility @ Bordeaux

(No radio-purity required & ArP2 gas mainly used at this stage of the R&D)

SPC-1 (2018) D = 0.4 m $r_{ball} = 1 \text{ mm}$ (1 bar)

SPC-2 (2021) D = 0.4 m r_{ball} = 1 mm or 3 mm (40 bar)

CPC-20 (2022) L x D = 1 x 0.37 (m) $r_{wire} = 20 \mu m$ (1 bar)

CPC-50 (2023) L x D = 0.27 x 0.27 (m) r_{wire} = 50 μ m (40 bar)

Signal treatment

To achieve very high precision measurements
(single-channel detector)
numerical signal processing becomes essential
(even under excellent Signal / Noise conditions)

Ionization / proportional signals

Constraints in HV, Ion space charge, gain fluctuation, quenching....

CPC-50 - Deconvolved signal - ArP2 - 1 bar – 210 Po - Track length ~3 cm

Proportional mode

 High S/N
 Long duration of integration can alter E-Resolution (impose to control the LF noise)

Ionization mode

- Low S/N
- Duration almost independent of the gas nature
 - Easier use with pure noble gases

Energy resolution

The first stage of R&D focused on the attainable energy resolution.

With ArP2 gas, we explored the SPC response from 0.2 bar to 1.1 bar ie. 17 and 3 cm track lengths (with identical gains).

In proportional mode => Resolutions of 1.1 to 1.2 % FWHM were obtained.

=> Similar results were obtained with the CPC.

- => Track direction doesn't affect energy resolution.
- => Track length doesn't affect the energy resolution.

(Contribution of the source and the electronic was estimated to account for 0.6%).

Energy resolution

The number of primaries being identical this degradation indicates that the gas did not have the right level of purity.

=> At this stage of R&D (with pressure rise), the use of a clean detector and a gas filtration system become essential.

Another strong improvement in resolution (> 1 %) is also expected by FEE optimization (in board FEE).

Validate the detection principle

(Xe recovery system only available since July 2022)

CPC-20 – Raw signal (no signal processing) - Xe - 1 bar - 1200 V - Prop. Mod - ²¹⁰Po source

Our simple system based on a circulating pump and 2 cold getters to trap electronegative molecules in Xe was not sufficient.

=> Upgrade of the system adding a hot getter (in test) => for now, resolution results are not stable... (see □ previous slide)

Additional stage? use of spark 9 discharge purifier?

Track localization

Experimentally, the variability of the observable Pt suggested that it depends on :

- The minimal distance of energy deposition relative to the anode
 - The diffusion of the primaries during their drift

and followed a dependency like: Pt = $Pt_{max} * (R/R_{max})^{\alpha}$

Inversion of this functional then made it possible to recover the distance of the track

=> To verify this empirical interpretation, we developed a very simple macroscopic modeling of the signals

Simulations

It uses outputs from (Geant4, Garfield, Magboltz) for the drift of the primary electrons.

- These dependencies must be computed beforehand for each new operating conditions (nature of the gas, pressure, electric field).
- The mechanisms of drift and scattering of the electrons are modeled by simple analytical functions as:
 - $T_{drift}(t) = t_{max} * (r/r_{max})^{\alpha}$
 - $\sigma_{\text{scat}}(t) = t_{\text{max}} * (r/r_{\text{max}})^{\beta}$

After transport and diffusion effects of the primary electrons

final signal

- The ion induction transfert function h_ion(t) is derived analytically from the electric field geometry;
- Then it is convolved to the electron time distribution.

Radial localization

Simulation of the SPC response with:

Track length of 2 cm - non-uniform ionization - 10000

e - ArP2 gas - Prop. Mode (G=8)

- Pt_{max}, Pt are deduced from plot (Qt, Pt)
- Rrecons2 = r_{max} * (Pt / Pt_{max})^{1/a} is then compared to the initial distance R set for the simulated event through residues

Multi-tracks recognition

@ low pressure, this kind of detector allows to observe fine details about the interactions:

13

NIM A 1028 (2022) 166382

=> Efficient recognition of background events (Compton, cosmics, etc.) should be achieved:

@ high pressure, except for cosmics, all interactions appear as point-like => recognition of the 2-tracks of $2\beta0\nu$ decay can become very challenging => work is in progress (set a limit in pressure ?)

Next CPC design

Cylindrical geometry is mostly use in industry

=> Design based on composite tank technology (600 bars) developed for H₂ storage

- Easy detector scalability up tons
- Low material budget (& and cost)
- Low internal amount of metals to reduce Rn attachment (< 1 gram ?)
- Additional longitudinal localization by charge sharing on a resistive wire => background rejection (NIM A 492 (2002) 26–34)

Futur goals: demonstrate the ability to instrument a tank (end-caps which hold the wire) (and many unknowns...: selection of radio-pure materials => NEMO expertise)

Conclusion & Perspectives

- Several results essential to the proof of concept have been aggregated, especially in terms of energy resolution and localization.
- For $2\beta 0\nu$, CPC in ionization mode could become our preferred option.
- A huge amount of work remains to be done to bring this concept to an operational scale (size, pressure, radio-purity, etc.).

Could we use industrial tanks with H2 at **600 bars as tracking chambers?** (or with other gases....) Source of radiation: Tanks wall Reactors, Cosmics.... (conceivable Particles detected: over hundreds of m) α , β , γ , ν , μ , n....

and why not using liquids (ionization mode)?

Backup: SCP / CPC Features

SPC is slower due to the lower E-field

Pro (ionization)

- Low HV
- No field screening
- No ion tail (=>duration)
- No gain fluctuation

Cons (ionization)

signal / noise

lons

signal

16

Proportional mode

Backup: Track distance sensitivity

CPC-50 - Deconvolved signal - ArP2 - 1 bar – 210 Po - Track length ~3 cm

Backup: Correlations between light & SPC signal

Pure Ar @ 1.1 bar – 210 Po source – Track length of 3 cm

=> Correlation drift time (SiPM) - peak time (SPC) observed.

=> A way to bypass the use of the light emission...

Backup: signal formation

Transport and diffusion effects for primary electrons

Garfield++/Model comparison - Signal contents

Convolution of the final Electron arrival time distribution With the ion induction function h_ion(t)