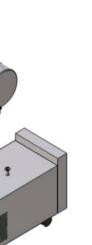


Talk by Eugene Semenov:

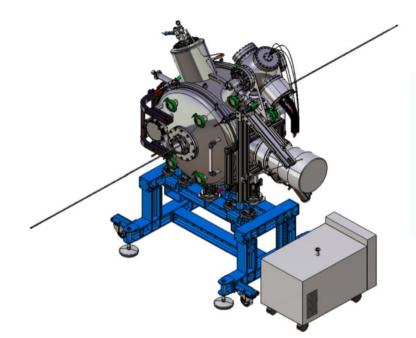
Feasibility evaluation of nuclear fuel homogeneity control with XEMIS2* camera

XeSAT2023


Nantes, France

6-8 June, 2023

Collaboration



Talk by Eugene Semenov:

Feasibility evaluation of nuclear fuel homogeneity control with XEMIS2 camera

XeSAT2023

Nantes, France

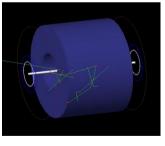
6-8 June, 2023

Team

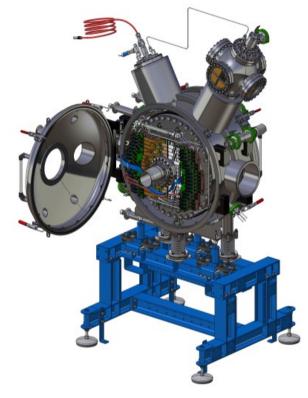
- Eugene Semenov¹
- Nicolas Beaupere¹
- Andre Charre²
- Abibatou **Ndiaye**²
- Amandine Spiteri²
- Dominique Thers

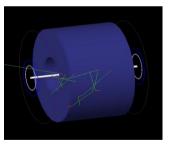
 1

Collaboration



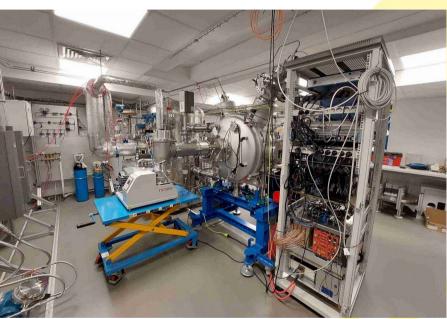
- XEMIS2 overview
- 3y-imaging
- Object to image
- Control methods: Scanning & Counting Compton tracking
- Conclusions





- XEMIS2 overview
- 3y-imaging
- Object to image
- Control methods: Scanning & Counting Compton tracking
- Conclusions

General view [Nantes Hospital]



Visit of XEMIS2 at CHU Nantes proposed for XESAT2023 participants!

XEMIS2

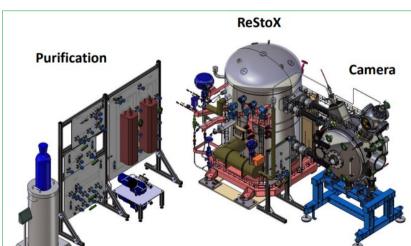
NOW

FUTURE

XEMIS1 R&D

XEMIS3

Whole body imaging



30 kg 12 cm drift TPC

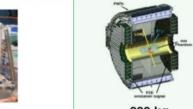
Toward 2 tons 2 m long 12 cm radial drift TPC

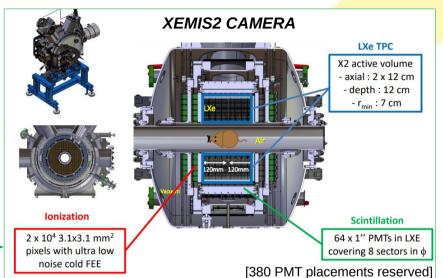
XEMIS2

NOW

FUTURE

XEMIS1 R&D

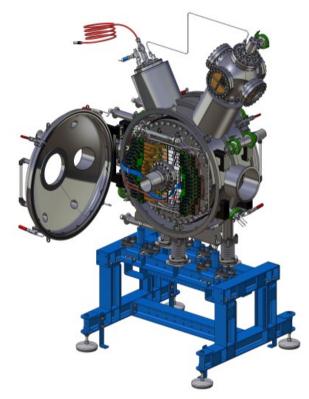

12 cm drift TPC

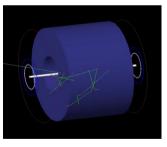

Whole body imaging

Toward 2 tons 2 m long 12 cm radial drift TPC

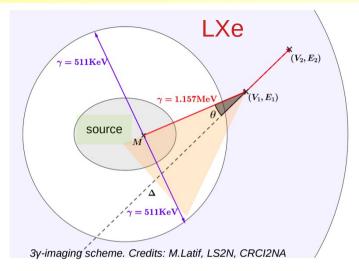
ReStoX Purification Camera

XEMIS2:


- Nuclear Medical Imaging with 3y technique and LXe
- High Rate Single Phase LXe Time Projection Chamber



- XEMIS2 overview
- 3γ-imaging
- Object to image
- Control methods: Scanning & Counting Compton tracking
- Conclusions


3y-IMAGING

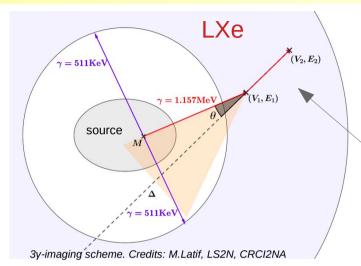
Classic way [medical application]

Source:

$\stackrel{44}{\stackrel{21}{\text{Sc}}}\stackrel{\beta^+}{\longrightarrow} \stackrel{44}{\stackrel{20}{\text{Ca}}}^* + \nu_e + e^+$	$\xrightarrow{\gamma}$	$^{44}_{20}\mathrm{Ca} + \nu_e + \mathbf{e^+} + \boldsymbol{\gamma}$
--	------------------------	--

Goal:

Direct 3D location of the radioactive source



3y-IMAGING

Classic way [medical application]

Source:

$$\xrightarrow{44}\text{Sc} \xrightarrow{\beta^+} \xrightarrow{44}\text{Ca}^* + \nu_e + e^+ \xrightarrow{\gamma} \xrightarrow{44}\text{Ca} + \nu_e + e^+ + \gamma$$

Measure:

$$V_1$$
, V_2 – hits positions
 E_1 , E_2 – energy deposited

$$\Delta = \overrightarrow{V_2}\overrightarrow{V_1};$$

$$\theta = \arccos\left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)}\right);$$

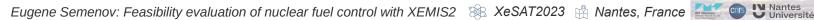
44Sc-pharmaceutics:

Emission v: $\sim 100\%$ of E_v = 1.157 MeV Fast emission [2.61 ps]

> Emission **\beta+** $E_{max} = 1.474 \text{ MeV}$ $T_{1/2} = 4 h$ effective range: 2.8 mm

Have:

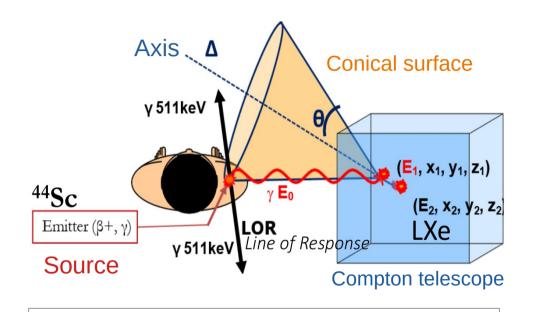
LOR reconstruction [e+] + Compton telescope [LXe]


Resolution:

Spatial \rightarrow axis \triangle of the cone Energy \rightarrow opening angle θ

Goal:

Direct 3D location of the radioactive source


3y-IMAGING

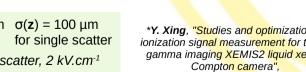
Summarize [medical application]

XEMIS2:

Low activity [~20 kBq] + good resolution*

Specificity:

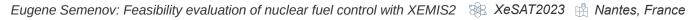
Mono-energetic y & e+ source

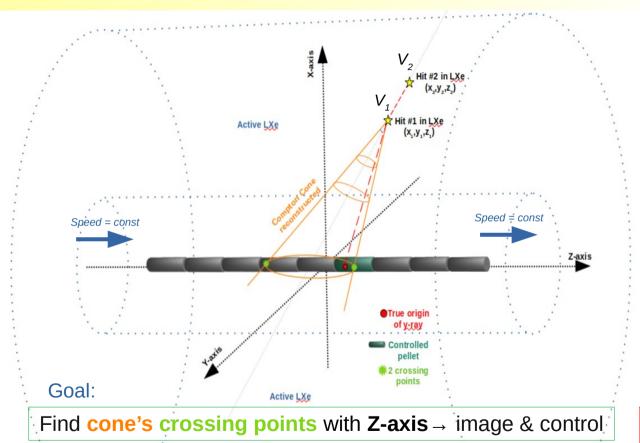

Research done:

Events **selection** and **topology**

Looking for crossing points → emitter's position

 $\sigma(x,y) = 100 \,\mu m \quad \sigma(z) = 100 \,\mu m$ $\sigma(E) = 3.5 \%$ for ²²Na, single scatter, 2 kV.cm⁻¹ $\sigma(\theta) = 2^{\circ}$

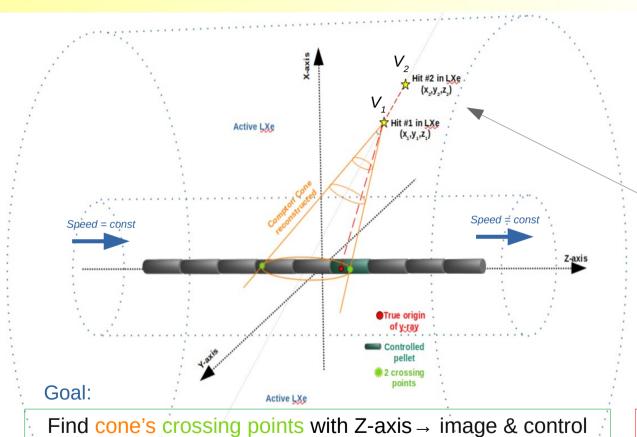

*Y. Xing, "Studies and optimization of ionization signal measurement for the 3gamma imaging XEMIS2 liquid xenon Compton camera", PhD thesis @ Subatech


IMAGING

Fuel control application [this work]

Source:

- Nuclear fuel pellets
- Moving along Z-axis
- Spectrum of y-rays


First time probe such source and geometry!

IMAGING

Fuel control application [this work]

Source:

- Nuclear fuel pellets
- Moving along Z-axis

orano

Spectrum of y-rays

Measure:

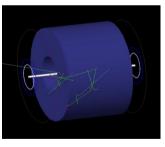
 V_1 , V_2 – hits positions E_1 , E_2 – energy deposited

Challenge [later]:

- Emission spectrum
- Control parameters
- High activity [total y]
- Low statistics [useful y]

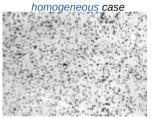
To be continued...

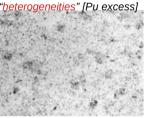
First time probe such source and geometry!



- XEMIS2 overview
- 3y-imaging
- Object to image
- Control methods: Scanning & Counting Compton tracking
- Conclusions

OBJECT TO IMAGE MOX [UO₂+PuO₂ pellets]



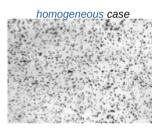


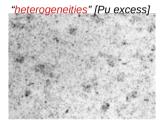
Goal:

Detect heterogeneity of fixed* sizes, shape & PuO2 concentration

*not in the scope

Uniform and non-uniform distributions of Pu in fuel³





Goal:

Detect heterogeneity of fixed* sizes, shape & PuO2 concentration

*not in the scope

Uniform and non-uniform distributions of Pu in fuel*

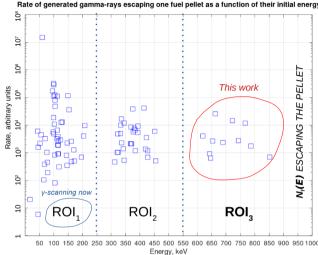
-120

Specificity:

- $\rho \sim 11 \text{ g/cm}^3$
- U + Pu + daughters
- High y activity
- Emission spectrum
- Moving in FOV
- Control parameters

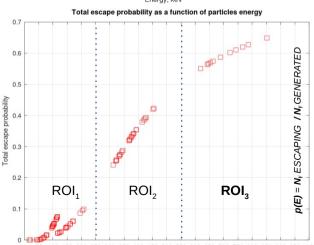
Fuel pellets moving in XEMIS2 FOV 240 mm FOV +120 Z, mm

Fuel pellets



OBJECT TO IMAGE MOX [UO₂+PuO₂ pellets]

Systematic bias ~ absorption:


Strong : $ROI_{1}[E_{y} < 250 \text{ keV}]$

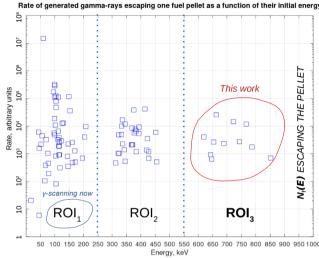
Moderate : ROI₂ [250 keV < E_v < 550 keV]

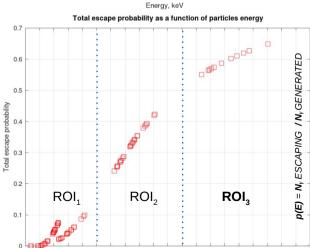
Small: ROI₃ [E_y > 550 keV]

Challenge:

Statistics & attenuation are opposite!

- + Noise study done: γ of UO₂ can be neglected
- + Noise study to be finalized: neutrons from ²³⁸Pu

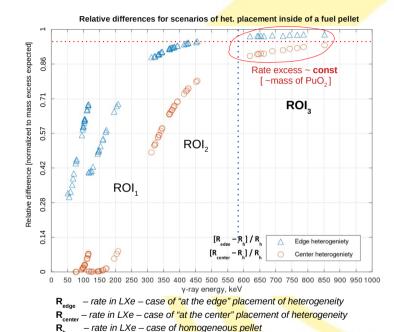



OBJECT TO IMAGE MOX [UO2+PuO2 pellets]

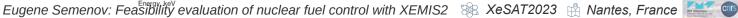
Systematic bias ~ absorption:

Strong: ROI, [E, < 250 keV] Moderate : ROI_2 [250 keV < E_y < 550 keV] Small : $ROI_3[E_y > 550 \text{ keV}]$

Challenge:


Statistics & attenuation are opposite!

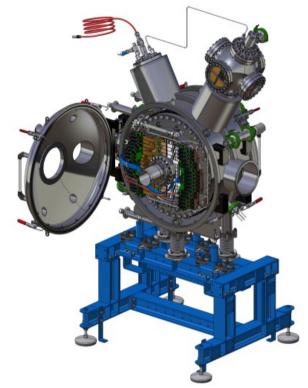
Detection threshold:

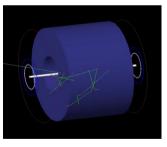

Impossible : ROI, + any scenario Better: ROI, but strong bias ~ scenarios Ideal: ROI3, but need good stats

Shielding study:

ROI₁ + ROI₂ y – removed with 1mm thick W-cylinder

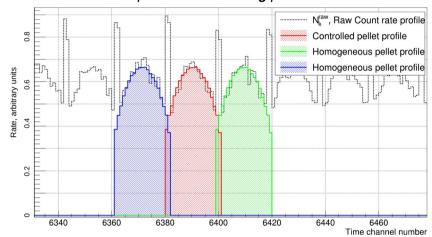
- + Noise study done: γ of UO₂ can be neglected
- + Noise study to be finalized: neutrons from ²³⁸Pu





- XEMIS2 overview
- 3y-imaging
- Object to image
- Control methods: Scanning & Counting Compton tracking
- Conclusions

CONTROL METHODS Scanning & Counting



- I. Geant4 simulation: source + XEMIS2
- II. Methods development

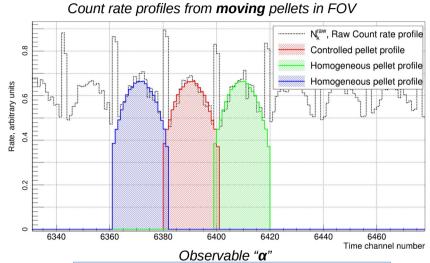
Count rate profiles from moving pellets in FOV

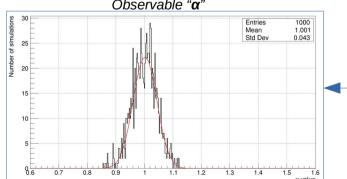
Ideas:

- Find observables
- Bias: **fluctuations** from each pellet
- Compare with excess expected
- Find control efficiency

Specificity:

- Subtract BKG from non-controlled pellets
- Study inter-pellet distance
- Is it enough?





I. Geant4 simulation: source + XEMIS2

II. Methods development

Ideas:

- Find observables
- Bias: **fluctuations** from each pellet
- Compare with excess expected
- Find control efficiency

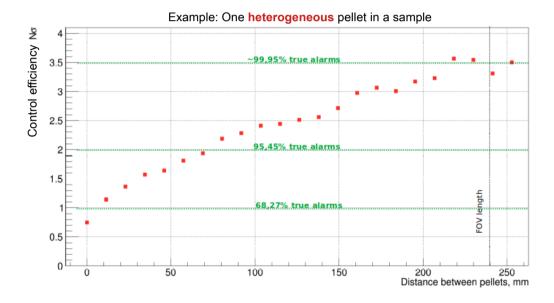
Specificity:

- Subtract BKG from non-controlled pellets
- Study inter-pellet distance
- Is it enough?

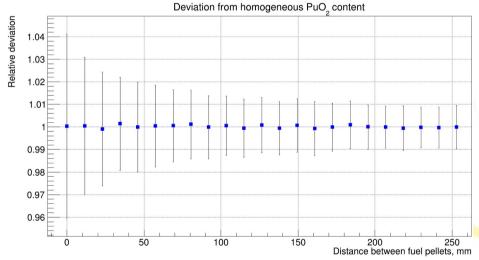
Example:

- 1000 simulations of **homogeneous** pellet
- inter-pellet distance of **0 mm**
- To compare: Uncertainty vs excess expected

CONTROL METHODS Scanning & Counting



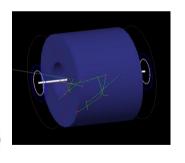
Done:


- Defined true and false alarms*

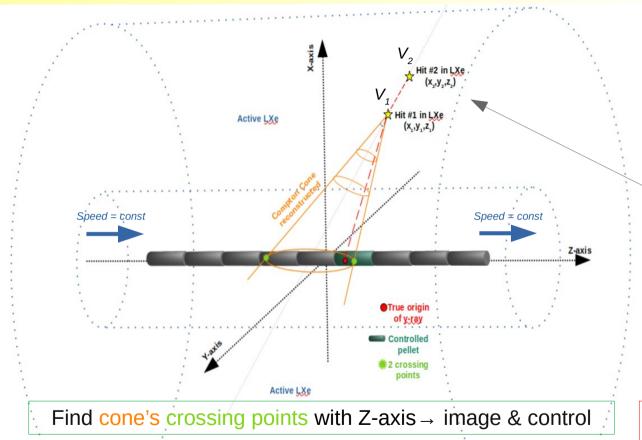
Inter-pellet distance study

To be defined:

- Target control efficiency
- Suitable for control?



- XEMIS2 overview
- 3y-imaging
- Object to image
- Control methods: Scanning & Counting Compton tracking
- Conclusions



CONTROL METHODS Compton tracking

Source:

- Nuclear fuel pellets
- Moving along Z-axis
- Spectrum of y-rays

Measure:

 V_1 , V_2 – hits positions E_1 , E_2 – energy deposited

Challenge:

- Emission spectrum
- Control parameters
- High activity [total y]
- Low statistics [useful y]

First time probe such source and geometry!

CONTROL METHODS

Compton tracking

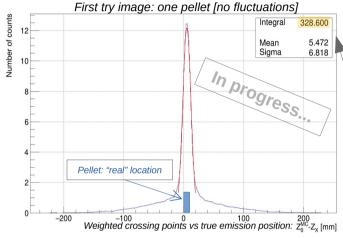
Strategy:

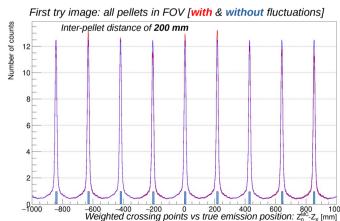
- 1. Image of controlled pellet
- Image of all pellets in FOV
- Detect the excess
- 4. Compare to fluctuations

Work in progress:

- 1. Improve events selection & cuts "Integral" → increased step-by-step
- 2. Compton Tracking in-depth
- 3. New topology? [3-hit events, cuts, ...]
- 4. Very **promising** and interesting to industry

Target: resolution ~ pellet size


CONTROL METHODS


Compton tracking

Strategy:

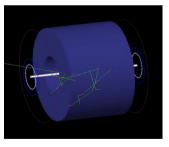
- 1. Image of controlled pellet
- Image of all pellets in FOV
- Detect the excess
- 4. Compare to fluctuations

Work in progress:

- 1. Improve events selection & cuts "Integral" → increased step-by-step
- 2. Compton Tracking in-depth
- 3. New topology? [3-hit events, cuts, ...]
- 4. Very **promising** and interesting to industry

Target: resolution ~ pellet size

First time probe such source and geometry!



- XEMIS2 overview
- 3y-imaging
- Object to image
- Control methods: Scanning & Counting Compton tracking
- Conclusions

CONCLUSIONS

- Feasibility not yet established...
- ...work is **in progress** right now!
- Very promising first results
- New application of imaging with LXe
- **Experiment** planned with XEMIS2 during the PhD
- Measure camera response with ¹³⁷Cs

- More **background** studies needed
- Step-by-step **improvement**: events selection, topology, cuts, etc...
- ...lead to better **resolution** and **control**

Many thanks to the **ORANO** & **Subatech's XEMIS team** that make this work possible.

Thanks to **XeSAT** international advisor committee, organizing committee, institutes and participants.

