

A Novel Total-Body PET Scanner Using Xenon-Doped Liquid Argon Scintillator for Outstanding Detection

An application in medical physics of the DarkSide collaboration

Azam Zabihi, ASTROCENT/CAMK-PAN, Warsaw, Poland On behalf of the 3Dπ TB-TOF-PET Collaboration

PET Principle

Coincidence Coincidence Subject detector detector True Scatter Random

Illustration describing PET annihilations

Three types of coincident events

Liquid Xenon vs. Liquid Argon

0.5%

And Benefit of Cryogenic

		0.376			
Scintillator:	LAr	LXe	LAr + Xe	LYSO	
Decay F/S (ns):	7/1600	4.3/22	~6/100	41	
Wavelength (nm):	128	175	~175	420	
Density (g/cm³):	1.40	2.94	~1.40	7.1	
Temperature (K):	87	162	87	298	
Photons/keV:	40	42	~41	28.5	
Cost (US\$/kg):	~2	~2000	~2	~4	

^{*}Shorter slow decay time than the pure liquid argon

SiPM Dark Count Rate (DCR) vs. Temperature

https://oar.princeton.edu/rt4ds/file/1663/1610.01915v1.pdf

Reduction in the dark count rate (DCR), improves the timing capability of the devices and Signal-to-Noise Ratio (SNR)

^{*}Scintillation light at a wavelength of 175 nm; Xe operates as a wavelength shifter (WLS)

^{*}Operating at temperatures near the boiling point of argon eliminates the need for cooling and results in lower Dark Count Rate (DCR)

3DPi Overview

A Total-body (TB), Time of Flight (TOF) PET scanner

- Xenon-doped Liquid Argon instead of Crystal scintillators
- Using Silicon Photomultipliers (SiPM)
- Double sided SiPM on scintillation
- Multiple detection layers

Geometry:

- 9 annulus detection layers
- Each layer has the scintillator sandwiched between two layers of SiPMs
- Each detection layer has ~18 mm LAr thickness
- PTFE supporting structure
- 2 m in length
- Geant4 simulations

Two configurations:

*LAr+Xe

*LAr+TPB (TetraPhenylButadiene: an organic WLS)

Geant4 Geometry Parameters

Parameter	Value
Inner radius (cm)	45
Outer radius (cm)	64
Length/AFOV (cm)	200
LAr thickness (cm)	16.2
Number of LAr layers	9
SiPM size (mm x mm)	10 x 10
Number of SiPMs	~1 x 10 ⁶
Cryostat Thickness (mm)	6

3DPi Geometry rendered in Fusion 360

Fluctuation Sources in Parallel and Perpendicular to LOR

Sources of fluctuation for construction of events parallel to the LOR:

- 1- Timing fluctuations:
 - The statistical nature of scintillation photon detection,
 - The time resolution of the SiPMs and their associated electronics.
- 2-Uncertainty resulting from imperfect scatter depth correction within the annular cylinder.

Sources of fluctuation for construction of events perpendicular to the LOR:

The lattice size of the SiPM layout imposes a limitation on the resolution in each of the two directions perpendicular to the LOR.

Dependence of Spatial Resolution on SiPM Parameters

Spatial resolution, in directions parallel and perpendicular to Line Of Response (LOR)

Desirable timing resolution: σ_{SiPM} < 60 ps)

Dependence of Spatial Resolution on SiPM Parameters

Improved PDE (>40%) ensures acceptable resolution, independent of PDE.

In this work, we assume a σ_{SiPM} 60 ps and the PDE is based on ref [1] at an over-voltage of 4 V.

National Electrical Manufacturers Association

NU 2-2018

A guide to characterize PET performance

Raw data (before image reconstruction stage)

LAr+Xe improves spatial resolution by more than a factor of 2.

after image reconstruction

The spatial resolution of a system represents its ability to distinguish between two points <u>after image reconstruction</u> (<u>Filtered backprojection</u>)

3DPi is able to produce consistent and accurate images regardless of the location of the source.

Central Phantoms:	1 cm radial position		10 cm radial position		20 cm radial position				
<u>Scanner</u>	Radial	Tangent	Axial	Radial	Tangent	Axial	Radial	Tangent	Axial
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
3DPi (LAr+Xe)	4.8	4.9	4.5	4.9	4.9	4.5	4.8	5.0	4.6
uExplorer (LYSO)	3.0	3.0	2.8	3.4	3.1	3.2	4.7	4.0	3.2

Sensitivity

The sensitivity test measures the counts per second that the scanner measures for every unit of activity present in a source.

$$S_{\rm tot} = \frac{R_{\rm CORR,0}}{A_{\rm cal}}$$

S_{tot}:System Sensitivity

 $\mathbf{R}_{\mathbf{Corr0}}$:The true coincidences count rate with no attenuation

A_{cal}:Line source radioactivity

Line source radial position in transaxial field of view	3DPi LAr+Xe (200 cm AFOV) [kcps/MBq]	GE SIGNA PET/MR (25 cm AFOV) [kcps/MBq]	uExplorer PET/CT (192 cm AFOV) [kcps/MBq]
Center	564.0	21.8	174.0
10 cm radial offset	501.1	21.2	177.0

A higher system sensitivity indicates that the scanner can detect a larger fraction of the emitted photons, which allows for shorter scan times or lower radiotracer doses.

Noise Equivalent Count Rate (NECR)

$$NECR = \frac{T^2}{T + R + S}$$

Noise Equivalent Count Rate: ability to detect and accurately quantify true coincident counts while minimizing the impact of noise, (random, and scatter events.)

Source Distribution:

A solid right circular high density polyethylene cylinder with a line source.

Three types of coincident events

Noise Equivalent Count Rate (NECR)

Background: Activity concentration used as the background in the Image Quality test Signal: Activity concentration used as the signal in the Image Quality test

$$NECR = \frac{T^2}{T + R + S}$$

Higher NECR at lower activity decay rate means extremely reduction radiopharmaceutical dose

Image Quality

- Measure image contrast and background variability using "hot" spheres in a uniform background
- Data generation and process still ongoing

Spheres (Red) phantom geometries Activity concentration: 4*5.3 kBq/mL=21.2 kBq/mL

Activity concentration: 5.3 kBq/mL Body (Cyan) and Test (Gold) phantom geometries

Image Quality

3DPi scanned for 5 s.

uEXPLORER scanned for 30 min.

Percent contrast=

$$\frac{\binom{C_{H,j}/C_{B,j}}{-1}}{\binom{a_H/a_B}{-1}} \times 100\%$$

 a_B : he activity concentration in the background; 5.3 kBq/mL a_H : The activity concentration in the hot spheres; 4*5.3 kBq/mL

Comparison of NEMA Test Results

	Scanner	Peak NECR [Mcps]	Activity concentration at peak [kBq/mL]	Sensitivity [kcps/MBq]	Timing resolution [ps]
	3Dπ (MC) (Preliminary)	~3	17.3*	560	163
		~3.5	30**	300	
	uEXPLORER TB-PET/CT	~1.5	17.3	174	412
Ha-	J-PET-TB (MC)	0.63	30	38	500
	GE SIGNA PET/CT	0.22	20.8	21.8	386
	VRAIN PET	0.14	9.8	25	229

The preliminary results demonstrate that our scanner system performance is comparable to commercial scanners.

Ongoing activities: Cryogenics and Hardware

- Developing a hardware prototype of a LAr+Xe PET ring at Cagliari, Sardinia
 - A dedicated laboratory is being set up in Sardinia for conducting tests and commissioning the cryostat.
- INFN Torino developed a front end ASIC board
- Testing the ALCOR board at Princeton University

Next steps

Simulation/Software

- Experiment with newer reconstruction algorithms Improve Geant4 simulation
- Optimize detection layer geometry

Hardware

- Testing ALCOR board with LAr+Xe Ensuring stability and homogeneity of LAr+Xe Set up cryogenic infrastructure at Sardinia Develop the PET scanner prototype

Thank you

azabihi@camk.edu.pl