

Status and perspectives of the PETALO project

Positron Emission Tomography Apparatus based on Liquid xenOn

Paola Ferrario, DIPC&Ikerbasque, XeSAT 2023, 5-8/6/23, Nantes

Positron emission tomography

 Non-invasive diagnostic technique which scans the metabolic activity of the body.

- Brain imaging (neurological activity is related to glucose consumption) —> Alzheimer, epilepsy...
- Cancer detection (tumoral cells tend to have a higher metabolism, so they're seen as bright spots).
- Any metabolic process can be studied with specific radiotracers.

- Complementary to computed tomography or magnetic resonance (anatomic image, shows the shape of organs and structures).
- It can detect abnormal changes before anatomic changes occur.

Positron emission tomography

How

- Glucose analogue doped with β-emitter radioactive isotope.
- Positron annihilation produces two 511-keV gammas almost back-to-back.
- Gammas are detected by a ring of scintillators.
- A line of response (LOR) is identified through time coincidence of two detectors.
- Image is reconstructed crossing many LORs.

Current technology

Scintillator with Photomultiplier cut light guides tubes (PMTs)

- Crystals, read by PMTs or SiPMs.
- High density materials (BGO, LYSO, LSO).

Energy resolution

Image improvement

 Energy resolution to reject scatters.

- Less noise in the image.
- Crucial in total-body PET.

Current PET resolution:
10-20% FWHM

From Journal of Nuclear Medicine 47(4):639-47

Time of Flight

Constraining the emission point

Time of Flight

Image improvement

No TOF

Same probability for every voxel in the line of response

A segment is constrained of width = time resolution of the system

- Time resolution: scintillation time, propagation of photons in the material, jitter of photosensors and electronics.
- Noise is reduced.
- Results improve at low statistics or bad quality data.
- Sensitivity increases, exposure time and/or dose can be reduced.

Why liquid xenon?

- Transparent to its own scintillation light.
- · High yield, short characteristic emission time.
- Continuous medium, uniform response.
- Less mechanical complexity.
- Shorter wavelength —> needs dedicated photosensors.
- Needs to be liquefied —> cryostat to reach -110 Celsius degrees.

	BGO	LSO	LYSO	LXe
Attenuation length@511 keV (mm)	10	11.5	12	36
Yield (photons/keV)	9	26	33	68
Decay time (ns)	300	40	36	2.2 , 27
Wavelength (nm)	480	420	420	178
Photo-fraction	40%	30%	30%	20%

Liquid xenon in medical imaging

1976 - Lavoie, first idea of using LXe in PET

Chepel et al. (1993) and TRIUMF (2008): LXe Time Projection Chamber, with light and charge detection - PMTs and APDs.

2004 - Waseda group: scintillation only and PMTs

2004-today - **Nantes-Subatech** group, LXe TPC Compton telescope

- β+ emitter + high energy photon
- Localization of the origin of emission from LOR + Compton cone
- Segmented anode+Frisch grid reads ionization charge

The PETALO concept

LXe with scintillation

 Detect scintillation light only: less complexity, less dead time.

SiPMs

- Fast response, high gain.
- Almost no dark count at cryogenic temperatures.
- Small, high granularity, flexibility of arrangement.
- Compatibility with magnetic fields (NMR).

People and institutions

- 3 senior physicist researchers
- 3 senior engineer researchers
- 2 post-doc
- 4 engineers
- 2 PhD students (one recently defended her PhD)

- Aluminum box, CF-100 size.
- Port for calibration source, inserted in a carbon-fiber tube.
- 3 cm of liquid xenon in each side.
- Two SiPM arrays to read scintillation light.
- Measure energy and time resolution.

- CF-100 size aluminum cube.
- Cooled by Sumitomo CH-100 cold head, via custom-made thermal links.
- Vacuum vessel for thermal isolation.

Photosensors

- Hamamatsu VUV-sensitive S15779, 6x6 mm² area.
- 4 arrays of 4x4 SiPMs per side.
- Protection window made of VUV-transparent quartz.

Electronics

- 2 TOFPET2 asics from PETsys.
- Two thresholds: low for timestamp, high for charge integration.
- Fast time and high rate applications.

External feedthrough

Internal feedthrough

Measurements

- Segmentation of the volume in 6x6x5 mm³ LXe spaces with teflon.
- One "cell" in front of each SiPM.
- The light produced in each gamma interaction is collected mostly by the sensor in front.
- Light collection optimized.

Measurements

Energy resolution

Energy resolution

Measurement of 64 channels: 4.2% +- 0.2% FWHM

- Compatible with NEST simulation of 511 keV gammas (~4%).
- Monte Carlo simulation gives 5.4% FWHM, which hints to some problems.

Saturation effects

Correct SiPM charge

• Possible problem of saturation: 6126 microcells per SiPM and MC predicts ~5300 pe.

Assuming 250 ns recovery time

- Monte Carlo simulation, with saturation effects, gives 4.4% +- 0.8% FWHM.
- Extract saturation function from MC -> correct data -> ~5.3% FWHM.
- Measurement of Ba-133 on-going: 81 and 356 keV.

Measurements

Time resolution

- Time resolution ~1 ns, larger than expected: still not correcting for time skew + other sources of degradation.
- TOFPET2 parameters being studied.

Conclusions and outlook

- PETALO is a technology based on LXe and SiPMs for PET scanners.
- First measurements of PETit shows excellent energy resolution.
- Studying saturation effects and intrinsic resolution.
- Potential for full-body PET.
- Improvement in the time measurement.
- Testing simulation with the image reconstruction algorithm to see the performance.
- Upgrade of PETit with larger volumes.

Thank you!

Dackup Market M

slides

MC studies of saturation

 Recovery time constant: 90 ns (90% recovery time: 200 ns)

Estimated recovery time: 250 ns

