

AXEL: High pressure xenon gas TPC for neutrinoless double beta decay search

Junya HIKIDA

Kyoto University, for the AXEL collaboration

7th June. 2023, XeSAT 2023, Subatech-IMT Atlantique

- Neutrinoless double beta decay
- AXEL experiment
- Results from 180 L prototype
- R&D for 1000 L detector construction

• Summary

- Neutrinoless double beta decay
- AXEL experiment
- Results from 180 L prototype
- R&D for 1000 L detector construction

Summary

Neutrinoless double beta decay $(0\nu\beta\beta)$

- $0\nu\beta\beta$ can occur if neutrino is Majorana particle
- *Majorana particle: fermion which is the same as its anti-particle If the neutrino is Majorana particle,
 - The smallness of the neutrino mass may be explained by seesaw mechanism

• Matter-antimatter symmetry of the Universe may be explained by Leptogenesis scenario Type I seesaw case \mathbf{n} W Heavy Majorana neutrino W Lepton number violation n

Current status of $0\nu\beta\beta$ search

- Lower limit of half-lifetime in 136 Xe: $_{PRL\ 130,\ 051801\ (2023)}$ 2.3×10^{26} year (90% C.L.) by KamLAND-Zen
- \rightarrow Neutrino effective mass $(m_{\beta\beta})$ upper limit: 36-156 meV
- > Normal mass ordering is favored by neutrino oscillation and cosmology observations
- > Half-lifetime is proportional to $m_{\beta\beta}^{-2}$

PRD 96, 053001 (2017)

Posterior distribution given the knowledge on neutrino mixing parameters

- Neutrinoless double beta decay
- AXEL experiment
- Results from 180 L prototype
- R&D for 1000 L detector construction

Summary

How to search for $0\nu\beta\beta$

 $0\nu\beta\beta$ is very rare decay \rightarrow **Large mass** and **Low BG** $0\nu\beta\beta$ can be identified by

- Sum energy of two electrons \rightarrow **Good energy resolution**
- Event topology → <u>Tracking capability (BG rejection)</u>

Using ¹³⁶Xe → High Q-value (Less BG contamination)

 $0\nu\beta\beta$ event topology in simulation

A Xenon ElectroLuminescence: AXEL

High pressure Xe gas TPC for $0\nu\beta\beta$ search

Tracking: BG rejection a few m electrons 136Xe 10atm ~1ton a few 100kV Large mass: ton scale ¹³⁶Xe

Good energy resolution

Readout system for ionization electron

Electroluminescence Light Collection Cell: ELCC

- Detect EL lights with VUV-sensitive MPPC
- Using EL process: good energy resolution
- Cellular structure: uniform detection → tracking
- Rigid unit structure: easy to extend

Road map of AXEL experiment

- Evaluation with 180 L prototype is ongoing
- Construction of 1000 L detector for physics run has begun in 2022

- Neutrinoless double beta decay
- AXEL experiment
- Results from 180 L prototype
- R&D for 1000 L detector construction

Summary

180 L prototype

Energy measurement

Two kinds of the measurement were done

- 88Y source: 1.8 MeV
- Thoriated tungsten rod: 2.6 MeV
- c.f. 136 Xe $\beta\beta$ Q-value: 2.5 MeV

Event topology

Evaluation of energy resolution

Extrapolation of $\Delta E/E$ (FWHM) to Q-value

- $> a\sqrt{E}$: 0.662 ± 0.029 %
- $> a\sqrt{E + bE^2}$: 0.717 ± 0.209 %

0.7 % (FWHM) @Q-value

Only single cluster is used for the evaluation

Breakdown of energy resolution

Breakdown of the energy resolution (FWHM) at 1.8 MeV

Fluctuation of the number of the initial ionization electrons	0.29 % (inevitable)	
Fluctuation of the EL conversion	0.24 % Better detection	
Position dependence of the EL gain	negligible efficiency of EL	
Waveform processing in AxFEB	negligible photon is desired	
Error in EL gain calibration	0.22 %	
Accuracy of MPPC recovery time measurement	negligible	
Error in time dependence correction	0.39 %	
Error in z dependence correction	negligible	
Dependence on the drift electric field	0.22 %	
Offset of the baseline less than 1 ADC count	< 0.05 % 0.23 % Need further study	
Fluctuation of the MPPC non-linearity	0.23 % Need Tax	
Total (estimated)	0.67 %	
Total (data)	$0.82 \pm 0.15 \%$ (1 σ error)	

- Neutrinoless double beta decay
- AXEL experiment
- Results from 180 L prototype
- R&D for 1000 L detector construction

Summary

1000 L detector experiment

Site: Kamioka observatory of ICRR (near Super Kamiokande)

→ About 1,000 m underground

Estimated performance (simulation)

- $0\nu\beta\beta$ event rate: 0.25 events/year (@ $T_{1/2} = 2.3 \times 10^{26}$ year)
- Background rate: < 0.1 events/year (²¹⁴Bi dominant)

Pressure vessel

Specification

- Size: $1.0 \text{ m}\phi \times 1.5 \text{ m}$
- Weight: 1.4 ton
- Pressure resistance: vac-10 atm
- Inner-fixed feedthrough
 - > Save space for electronics
 - > Shorten cable length

个inside the lid

New MPPC

Large-area MPPC

- ~ twice larger area than before
- Reduce statistical fluctuation of EL photon
- → Improve fluctuation of EL conversion

Current MPPC \div New MPPC \div 4-4.7 mm \div 6932 pixels

MPPC without package

- Remove ceramic package because of its RI contamination
- Place the MPPC chip directly on flexible printed circuit (FPC)
- Finish the evaluation of prototype FPC with 1 channel

Readout electronics board

Modifications

- Higher density (to increase ELCC unit channels: 56ch→64ch)
- Optimization of the gain (for new MPPC)
- Change readout resistance: $50\Omega \rightarrow 10\Omega$ (to suppress nonlinearity)

High voltage supply

Cockcroft-Walton (CW) circuit

- Make high voltage in the chamber
- → Avoid big feedthrough

Achieved

- 49 kV in atmosphere (50 steps)
- 30 kV in Xe gas (30 steps)
- * Problem: discharge at the edge of FPC
- → Apply varnish on the surface

For higher voltage

- > Higher input frequency
- > Larger input amplitude
- > More steps
- → Target voltage: 76 kV (100 V/cm/bar)

High resistive electrode

- To reduce discharge at ELCC, replace part of electrode with high resistive material
- → <u>Diamond-like carbon (DLC)</u>
- Its evaluation with prototype will be coming soon

DLC coating electrode (150 $M\Omega/mm^2$)

Scintillation light detection

Issues with 180 L prototype

- Using 7 VUV-sensitive PMTs
- \rightarrow Small detection area (2.1 mm \times 2.1 mm)
- Many accidental coincidence pulses with 1 p.e. threshold
- → Mistake the z-position reconstruction

X-Arapuca-like configuration

- X-Arapuca: proposed in DUNE
- Large detection area with MPPCs
- Select scintillation pulse by total light yield
- Study with simulation is in progress
- \rightarrow ~13 % light transported to edge (preliminary)

C. Brizzolari et al 2021 JINST 16 P09027

- Neutrinoless double beta decay
- AXEL experiment
- Results from 180 L prototype
- R&D for 1000 L detector construction

• Summary

Summary

AXEL is a high pressure xenon gas TPC for neutrinoless double beta decay search

- High energy resolution with EL process
- BG rejection with topological information
- → Achievable using ELCC.

Detector performance demonstrated with 180 L prototype

- Energy are measured up to 2.6 MeV
- Track patterns are observed
- Energy resolution extrapolated to the Q-value: 0.7 % (FWHM)

R&D and construction for 1000 L detector is ongoing

For further information, please find documents on our web page: https://www-he.scphys.kyoto-u.ac.jp/research/Neutrino/AXEL/publication.html

Back up

Data taking in 180 L prototype

Analysis flow in 180 L prototype

Signal and BG in 1000 L detector

Geant 4 simulation using the geometry of 1000 L detector

 \rightarrow Condition: Fully-contained & ROI (Q-value $\pm 1\sigma$)

$0\nu\beta\beta$ signal

- Generate the signals and scale with the current limit
- \rightarrow 0.25 events/year @ $T_{1/2} = 2.3 \times 10^{26}$ year

Background (mainly gamma ray from ²¹⁴Bi: 2448 keV)

- Detector components: < 162 events/year
- Environment: < 580 events/year (with 20 cm Pb shield)
- BG rejection efficiency with deep learning: 0.013 %
- \rightarrow < 0.1 events/year

New MPPC evaluation

Nonlinearity of MPPC

Operational principle of MPPC

- The gain is proportional to applied voltage
- > When photon comes into a pixel, output constant charge

Cause of nonlinearity

- ➤ Voltage drop in an output pixel
- ➤ Voltage drop from readout resistance

Reduce MPPC gain

→ take time to recover

Measurement of MPPC nonlinearity

Calibrate PMT output with MPPC output in small photon count
→ Estimate real photon count from PMT output

Estimation of radioactivity

Most serious BG-source isotope: ²¹⁴Bi

- > From ²³⁸U decay chain
- Emits a 2448 keV gamma
- \rightarrow 0.4 % difference from the Q-value

Measurement using Ge detector was done

→ MPPC packages is too contaminated

	Mass (kg)	Total activity of ²¹⁴ Bi (²³⁸ U)
Pressure Vessel (stainless steal)	948	< 436 mBq *
ELCCs w/o MPPC packages	22	< 64.1 mBq
ELCC sustainers	34.7	< 40.1 mBq *
PMTs + PMT sustainers	13.4	< 103 mBq
MPPC Packages	1.9	> 60000 mBq

^{*} The upper limit of ²³⁸U activity in stainless steal refers to data measured by NEXT exp.

J. Martin-Albo et al, Journal of High Energy Physics, 159 (2016)

Detail of CW discharge problem

Discharge path:
Condenser → FPC edge → FPC connection point

Diamond-like carbon

• Unique material which has both graphite and diamond structure

Structure of DLC

• Change its properties depending on the ratio of including structures.

Properties of DLC (gray area)

https://sumitomoelectric.com/sites/default/files/ 2020-12/download_documents/E88-30.pdf

X-Arapuca in protoDUNE

BG rejection using topology

Deep Learning

- Learning with simulated 0vββ and gamma-ray
- Signal acceptance: 27 %, BG rejection: 99.9996 % @ threshold 0.9 (assuming 2448 keV gamma-ray from ²¹⁴Bi as background)
- The DL performance can be evaluated by prototype real data

