

DarkSide-20k

Dark Matter Detection in Liquid Argon Dual Phase TPC

Timothée Hessel, on behalf of the DarkSide-20k collaboration

Evidences of dark matter

At different astrophysical scales

- Galaxy rotation curves and gravitational lensing
- Cluster dynamics
- CMB anisotropies

Direct dark matter search experiments

³⁹Ar β-emitter contamination

Natural depletion in underground argon

³⁹Ar produced in atmosphere by spallation of cosmic rays.

- Underground argon is naturally depleted.
- Extraction wells for large production.
- Urania facility in Colorado for extraction and purification (99.99% purity).

Why liquid argon?

Pulse shape discrimination

DarkSide-50

A first successful milestone

Dual Phase Time Projection Chamber

- 46.6 kg of UAr
- 1 cm thick gas pocket
- 2x19 Photo-Multiplier Tubes

Water Cerenkov veto

- Neutron shielding and μ detection
- 1000 tonnes of purified water

Liquid scintillator veto

- Neutron and γ tagging
- 30-tonnes of boron-loaded scintillator

Dual Phase Time Projection Chamber

Working principle

- ► Interacting particle induces **ER** or **NR**
- The recoil produces scintillation (S1) and ionization
- lonization electrons are drifted and produce electro-luminescence in the gas pocket (S2)
- S1 and S2 lights are seen by photosensor arrays on top and bottom

Results after 532 days exposure

High mass and low mass analysis

Low mass analysis using ionization channel only:

- Nearly 100% efficiency in single electron S2 detection.
- ► Threshold down to: $4 e^- \Leftrightarrow 90 PE \Leftrightarrow 0.6 keV_{nr}$.
- Considering Migdal effect and WIMP-Electron scattering.

Moving on to DarkSide-20k

Down to the neutrino floor

- Larger volume: 1 day of DS-20k has the same exposure as DS-50 full data taking.
- TPC: 50 tons of UAr, 20 tons fiducial.
- Inner veto: 32 tons of UAr.
- **SiPMs** instead of PMTs: better radio-purity.

SiPM characterisation

Crucial proof of concept

Parameter	Requirement	Achieved
Photo-detection efficiency at 420 nm	> 40%	> 42%
Dark Count Rate (87 K)	250 Hz/tile	~20 Hz/tile
Afterpulses, cross talk	< 50% + 50%	< 10% + 35%
SiPM gain	> 1e6	> 1e6
SNR after filtering	> 8	>10
Time resolution	~10 ns	~15 ns

Requirements fulfilled!

Argon 39 depletion

From the extraction to Gran Sasso

ARIA distillation column

For purification and ³⁹Ar-⁴⁰Ar separation

The highest distillation column in the world, currently under assembly:

- Chemical purification rate: 1t/day
- Argon purity to ppt (10-12)
- Relative volatility of ³⁹Ar with respect to ⁴⁰Ar: 1.0015
- Isotope purification rate: O(10) kg/day (not needed to reach DS20k sensitivity)

DArT (Depleted Argon Test)

Measurement of ³⁹Ar depletion factor

BackgroundMitigation and rejection

- LNGS underground laboratory at Gran Sasso.
- Anti-coincidence with vetoes.
- Rejecting multiple scattering events.
- Fiducialisation to reject materials radioactivity.

Outer veto and neutron shielding

With Gd-doped acrylic

DS-20k expected limits

High discovery potential for the next direct search generation

Supernova detection in DS-20k

Neutrinos interacting via CEvNS

 $27\,M_{\odot}$ at 10 kpc: 350 events expected in ~10 s

During a core collapse supernova, 99% of the energy is emitted through neutrinos (~10⁵³ erg):

- CEVNS signature: low energy (S2 only) nuclear recoil.
- DS-20k alarm system for supernova observation?

Conclusion Unprecedented physics reach

- Construction started (infrastructures and photo-electronics).
- Data taking starting in 2026.
- 5σ discovery down to $3x10^{-48}$ cm² at 0.1 TeV/c² after 10 years.

Thank you for your attention

Backup slides

WIMP-nucleon sensitivity

With noble liquids experiments

High mass search in DS-50

Before and after analysis cuts

Low mass search in DS-50

Before and after analysis cuts

Improved light dark matter limits from 2018 analysis thanks to:

- Calibration of ionization response to ERs and NRs down to <1 keV
- Extended exposure
- Better data selection

Best SI WIMP-nucleon limits down to 1.2 GeV/c² (40 MeV/c²) WIMP mass without (with) Migdal effect.

Improved limits on WIMP-electron interactions, galactic ALPs, dark photons, and sterile neutrinos.

Analysis threshold

SiPM characterisation

Noise measurements

Hit finder algorithm

Matched filtering

- Convolute waveform with a reversed template of the single photo-electron response.
- Subtract moving average.
- Apply time-over-threshold.

