GaNESS: Detecting CEVNS with noble gases.

A. Simón, L. Larizgoitia and F. Monrabal

Neutrinos: what we know

@raquelberryfinn

Muón TAU

Ve

- Number density in Universe only outnumbered by photons.
- Have mass (even if lightest fermion).
 - 3 light neutrino states.
- 3 flavours.
 - Large mixing.
- Only interact weakly.
 - No color nor electric charge.
 - Tiny cross-section → Extremely hard to detect

Coherent Elastic Neutrino-nucleus scattering (CEvNS)

CEDNS

Predicted in SM for decades

First detected 6 years ago

Coherent Elastic Neutrino-nucleus scattering (CEvNS)

Detecting CEvNS: Source

Requirements

- Sufficiently intense in yield.
- Neutrino energy low enough.
 - Coherence condition: |Q| < 1/R

Candidates

- Spallation sources $(\pi^+ DAR)$
- Nuclear reactors

European Spallation Source (ESS)

- The ESS will generate the most intense neutron beams for multi-disciplinary science.
- But also, the largest low-energy neutrino flux!
- ν production @ ESS is x9.2 @ SNS
- Similar s/b to SNS but much higher statistics.

Neutrino production at different facilities

Backgrounds at ESS

- Steady-state backgrounds can be subtracted.
- Beam-induced prompt neutrons are the main source of background.
- Simulations undergoing to evaluate deployment locations.
 - 2 candidate locations under study.
- On-site measurements planned.

Detecting CEvNS: Detectors

Physics potential maximized with:

- Low energy threshold
 - Interesting physics at low energy

- Different nuclei
 - Breaks degeneracies

GaNESS: A high pressure noble gas TPC for CEVNS

- Allows operation with different nuclei (Kr, Ar, Xe).
- Simple, no cryogenic operation
- Potential low energy threshold (1-2 e⁻) via electroluminescence (EL) amplification.
- Technology developed by the PI within NEXT experiment.
 - Low-background solutions already developed by NEXT collaboration.
 - R&D needed for higher pressures and lower energy regime.
- Lower density than other techniques → Bypassed by large ESS neutrino flux → 20 kg detector is enough.

GaNESS: Detector concept

GaNESS: Detector concept

GaNESS project

GaNESS Prototype (GaP)

- **R&D**
- Study of nuclear recoils

GanESS construction at DIPC

Operation GaNESS at ESS

The Gaseous Prototype (GaP)

Goals

- Full evaluation of the technique with different gas conditions:
 - Different noble gases: Xe, Ar, Kr.
 - Pressure up to 50 bar.
- Characterization of the low energy response of the detection technique:
 - Detection threshold.
 - Nuclear recoil response (quenching factor).

Differences in the expected distributions given

Nantes, June 2023 XeSAT2023 13

Laboratory

1 year ago

GaP design

- Small vertical TPC:
 - 2 cm drift length.
 - 1.1 cm EL gap.
- 7 Hamamatsu R7378 PMTs on top.
 - TPB coated frontal window.
 - Pressure resistant window for second phase.

15

Inside GaP

EL spark tests and troubleshooting

- First operation with Ar at pressure (up to 10 bar) a month ago.
- Lots of sparks at low fields.
 - Occurring at the PEEK holders.
 - Solved by holding the EL mesh from the bottom.

New PEEK holders

EL spark tests and troubleshooting

- Sparks through the mesh, now at higher field (still low).
- Possible suspects:
 - Imperfections in the EL grid.
 - High field regions around hexagon vertex.
- Scheduled: change to a wire mesh.

Photochemical etched mesh

Wire mesh

GaP status

- Started data-taking last week!
- 83mKr source coupled to gas system.
- Ar at 7.5 bar.
- Low EL operation (~0.6 kV/cm/bar)
 - At the EL threshold.
 - Imperfections in the mesh producing higher field regions?
- Now trying to understand the detector!

GaP short term plans

Coming weeks:

- Main goal: understand the detector with Ar.
 - Keep working with ^{83m}Kr.
 - Additional sources by the end of the month.
- Test wire mesh as EL gate.
- Slow controls for unattended operation.
 - TPC HV, PMT HV, Gas
- Develop new DAQ software:
 - More flexibility than commercial sw.
 - Trigger on differential signal.

Source	Energy
^{83m} Kr	41.5 keV
²⁴¹ Am	59.5
¹³³ Ba	81, 356 keV
⁵⁷ Co	122 keV
²² Na	511 keV
¹³⁷ Cs	662 keV

GaP medium term plans

- Start looking at nuclear recoils:
 - 252Cf source
 - Needs to be exempt → Low activity (<1000 n/s)
 - Increase drift region (10 cm) to maximize interaction rate.
 - Lead shield blocks source-induced gamma background.
- Clean tent in autumn for cleaner operation.

GaP medium-long term plans

- Move to Xe and repeat the studies done in Ar.
- Quasi-monoenergetic neutron sources for improved quenching factor measurements
 - D-D neutron generator → Tagging with backing detector.
 - Photoneutron sources:
 - 88YBe (~153 keV n)
 - 124SbBe (~24 keV n)

Summary

- CEvNS detection opens a new avenues in the search of physics beyond the Standard Model.
- ESS will become the largest low-energy neutrino source. Perfect facility to study this process.
- The GanESS project, will produce a detector to observe the process at the ESS with a variety of nuclei and large discovery potential.
- The GanESS Prototype (GaP) will allow to fully characterize the technique in the low energy regime.
- GaP data-taking and operation has just started with a focus, starting with gaseous Ar at moderate pressures (up to 10 bar).

Backup

SNS vs ESS

	SNS	ESS
Average power	1.4 MW	5 MW
Proton pulse length	695 ns	2.86 ms
Peak power	34 GW	125 MW
Energy per pulse	24 kJ	357 kJ
Pulse repetition rate	60 Hz	14 Hz

Energy resolution in HPGXe

- Very good energy resolution up to ~50 bar.
- Best experimental result: 0.6%@662keV.
- It will allow for a better spectrum reconstruction, thus better sensitivity to deviations from SM.

Electroluminescence

- Emission of scintillation light after atom excitation by a charge accelerated by a moderately large (no charge gain) electric field.
- Linear process, huge gain (1500 ph./e-) at 3 < E/p < 6 kV/cm/bar.
- Almost no extra fluctuations during the amplification process.
- More stable at high pressure, no need of quenchers.

Detector Technology	Target	Mass	Steady-state	E_{th}	QF	E_{th}	$\frac{\Delta E}{E}$ (%)	E_{max}	$CE\nu NS \frac{NR}{yr}$
	nucleus	(kg)	background	(keV_{ee})	(%)	(keV_{nr})	at \mathbf{E}_{th}	(keV_{nr})	@20m, $>E_{th}$
Cryogenic scintillator	CsI	22.5	10 ckkd	0.1	~10 [71]	1	30	46.1	8,405
Charge-coupled device	Si	1	1 ckkd	0.007	4-30 [97]	0.16	60	212.9	80
High-pressure gaseous TPC	Xe	20	10 ckkd	0.18	20 [104]	0.9	40	45.6	7,770
p-type point contact HPGe	Ge	7	15 ckkd	0.12	20 [118]	0.6	15	78.9	1,610
Scintillating bubble chamber	Ar	10	0.1 c/kg-day	-		0.1	~ 40	150.0	1,380
Standard bubble chamber	C_3F_8	10	$0.1~\mathrm{c/kg\text{-}day}$	-	-	2	40	329.6	515