Status and Results from the LUX-ZEPLIN Experiment

P. Brás¹, on behalf of the LZ Collaboration

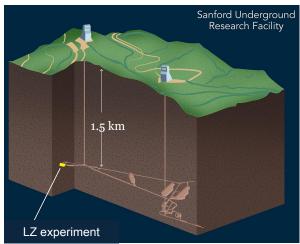
¹LIP, Physics Department, University of Coimbra, Coimbra

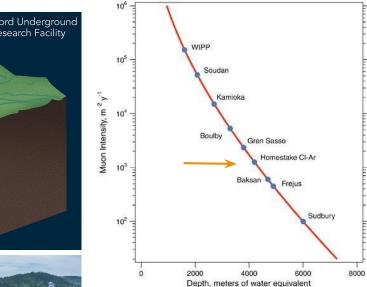
XeSAT 2023 Nantes - 2023/06/06

LZ (LUX-ZEPLIN) Collaboration,

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison

Thanks to our sponsors and participating institutions!

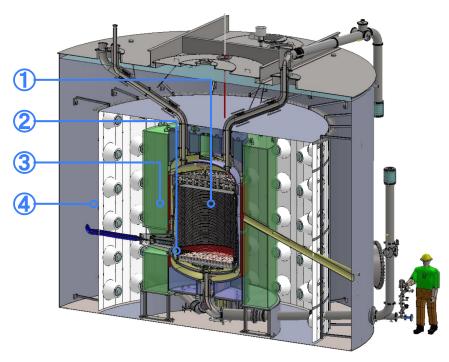



SURF Underground Lab

LZ is installed at SURF (SD, USA) in the Homestake gold mine at a depth of 4850 ft (1.5 km)

- 4300 m.w.e overburden
- ~10⁶ muon flux reduction

The LUX-ZEPLIN (LZ) Experiment

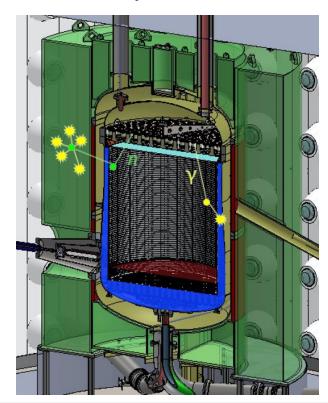

7 tonne dual-phase Xe ultra-low background TPC designed for dark matter searches (1)

- Observed by two arrays of 253 (top) and 241 PMTs (bottom).
- > 1.5 m diameter and height
- 4-high voltage wire mesh electrodes:
 - Drift field (193 V/cm)
 - Extraction region (7.3 kV/cm)
- > PTFE Field cage for increased light collection
 - >0.971 reflectivity (95% CL)

Two additional detectors for background modeling and mitigation: "Skin" detector (2) and Outer Detector (OD) (3)

All instrumented volumes submerged in a 228 t water shield 4 also working as a muon veto (>99% eff.)

LZ is primarily a **dark matter** search experiment, but has a broad science program: rare xenon decays, neutrino interactions, axions, etc.


Skin and Outer Detectors

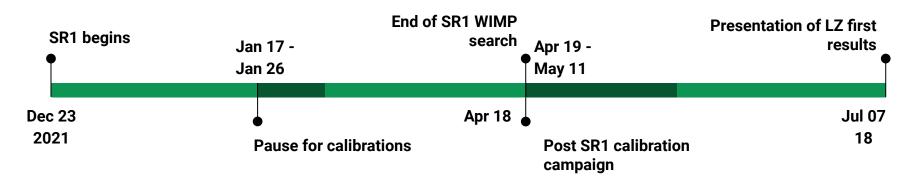
Gamma and Neutron Vetoes: in situ characterization, tagging and reduction of neutron and gamma backgrounds to improve sensitivity.

The Skin detector:

- 2 tonnes of LXe surrounding the TPC
- 131 1" and 2" PMTs on top, side and bottom
- Lined with PTFE to maximize light collection (100 keV threshold in >95% volume)
- Anti-coincidence detector for γ-rays

The Outer Detector (OD):

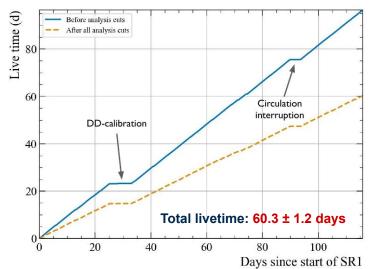
- 17.3 t Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs mounted in the water tank
- Anti-coincidence detector for y-rays and neutrons
- 8 MeV y-rays from thermal neutron capture on Gd, 2.2 MeV y-ray from H capture.
- 89% neutron tagging efficiency.



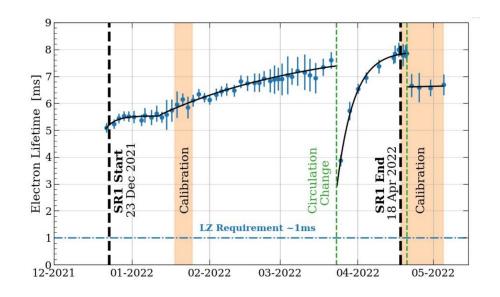
LZ Science Run 1 (SR1)

Planned to collect 60 live-days after completing extensive commissioning and testing campaigns across all detector systems.

- To prove successful detector operation and expectation for competitive sensitivity.
- Data collected from 23 Dec 2021 to 11 May 2022 under stable detector conditions. *
- Engineering run no salting/blinding. \star
 - Goal was to understand the detector and sources of systematic errors.
 - Bias mitigation: all analysis cuts were developed and optimized on sideband 0 selections and calibration data.



LZ Science Run 1 (SR1)


Total livetime: 60.3 ± 0.5 days

- 1 Hz GPS trigger signal used to quantify systematics in livetime estimator.
- Two periods of paused science-data:
 - Mid-run neutron calibration campaign
 - Circulation interruption

Electron lifetime: the mean time a free electron will live before getting captured by impurities.

- LZ requirement: > 1ms (max drift time)
- During SR1, e-lifetime consistently greater than 5ms

Detector Calibrations

Nuclide

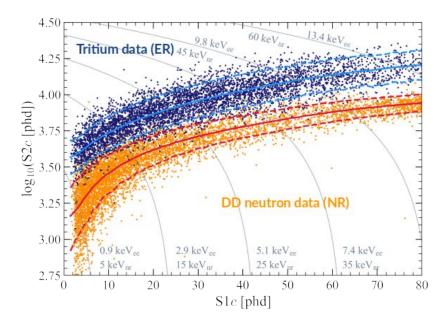
Energy [keV]

Several **calibration strategies** deployed:

- Internal sources mixed in the xenon
- Vertical source tubes for commercial rod sources
- Photo-neutron source
- DD neutron generator

What we get from calibrations:

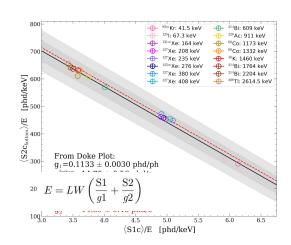
- Normalize spatial variations in observed S1 and S2
- Position reconstruction & TPC wall position
- Inter-detector timing calibrations
- Electron Recoil (ER) & Nuclear Recoil (NR) response
- OD light yield
- OD neutron tagging efficiency

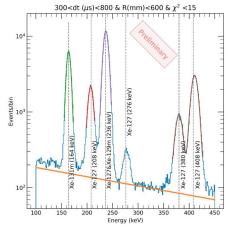


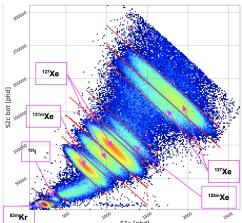
Type	Energy [kev]	1/2
γ	32.1 , 9.4	1.83 h
γ	164	11.8 d
α, β, γ	various	10.6 h
β	18.6 endpoint	12.5 y
β	156 endpoint	5730 y
(α,n)	1500 endpoint ^(a)	432 y
n	Watt spectrum	2.65 y
(α,n)	11,000 endpoint	432 y
γ	122	0.74 y
γ	2615	1.91 y
γ	511,1275	2.61 y
γ	1173, 1333	5.27 y
γ	356	10.5 y
γ	835	312 d
(γ,n)	152	107 d
(γ, n)	22.5	60.2 d
(γ,n)	88.5	15.3 d
(γ,n)	47	6.24 d
n	2450	_
n	$272 \rightarrow 400$	_
	$\begin{array}{c} \gamma \\ \gamma \\ \gamma \\ \alpha, \beta, \gamma \\ \beta \\ \beta \\ (\alpha, n) \\ n \\ (\alpha, n) \\ \gamma \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

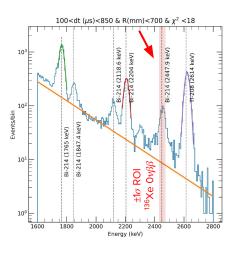
DD generator

- LXe response and ER/NR band fits obtained using Noble Element Simulation Technique (NEST)
- ER band from CH₃T calibration (blue).
- NR band from DD calibration (orange).
- ER leakage: 99.9% rejection of ERs below NR median
- Fit data to model for detector-performance parameters:
 - Light collection efficiency
 g₁= 0.114 ± 0.002 phd/photon
 - Charge gain $g_2 = 47.1 \pm 1.1$ phd/electron




10

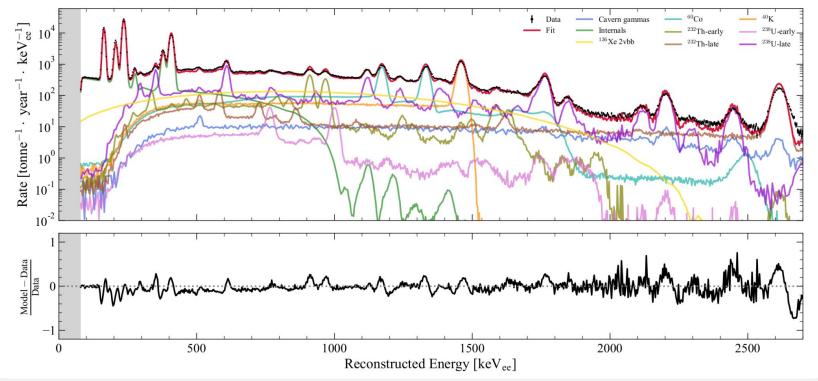



Mono-energetic ER peaks also used to determine detector gains $(g_1 \& g_2)$

Parameter	Value
$g_1^{ m gas}$	$0.0921\mathrm{phd/photon}$
g_1	0.1136 phd/photon
Effective gas extraction field	$8.42\mathrm{kV/cm}$
Single electron	$58.5\mathrm{phd}$
Extraction Efficiency	80.5%
g_2	$47.07\mathrm{phd/electron}$

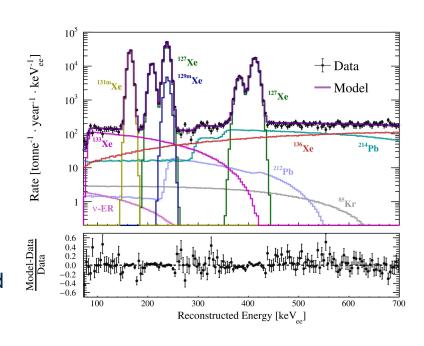
LZ obtained an unprecedented energy resolution for liquid xenon at high energies:

 $0.64 \pm 0.02 \% (\sigma/E)$ for 208 TI 2614 keV


★ Only using the bottom PMT array to reconstruct energy.

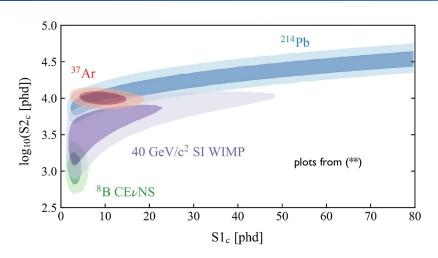
Characterization of all backgrounds across all energies.

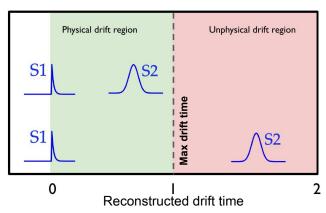
• <u>Simulations</u> and extensive <u>assays campaign</u> provide a full BG model:



Backgrounds relevant for WIMP search:

- Dissolved beta emitters:
 - ²¹⁴Pb (²²²Rn daughter), ²¹²Pb (²²⁰Rn daughter), ⁸⁵Kr, ¹³⁶Xe (2 beta)
- Dissolved e-captures (monoenergetic x-ray/Auger cascades):
 - 127Xe, 124Xe (2 e-capture), 37Ar
- Long-lived gamma emitters in detector materials:
 - o ²³⁸U chain, ²³²Th chain, ⁴⁰K, ⁶⁰Co
- Neutron emission from spontaneous fission and (α,n)
- Solar neutrinos from ⁸B (NR) and pp (ER) chains
- Accidental coincidences.

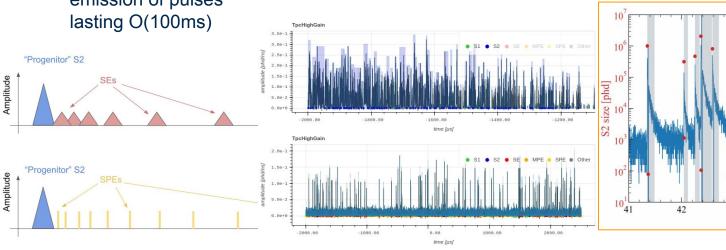


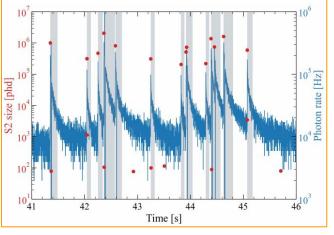

Argon-37 electron capture with $T_{1/2}$ = 35 d and monoenergetic 2.8 keV ER deposition:

- Naturally occurring in the atmosphere via ${}^{40}\text{Ca}(n,\alpha){}^{37}\text{Ar*}$, or cosmic spallation of ${}^{\text{nat}}\text{Xe}$
- Equilibrium values range from 1-100 mBq/m³
- Expecting O(100) ³⁷Ar events in SR1
 [2201.02858]

"Accidentals": Pairing of random isolated S1s and S2s that mimic real single scatters:

- Isolated S1s (~1 Hz), isolated S2s (~10⁻³ Hz)
- Events with <u>unphysical drift time</u> used to constrain the accidentals rates
- Efficiency of data quality cuts to remove accidentals: >99.5%
- Data-driven accidentals BG: 1.2 ± 0.3 events


Data Quality Cuts

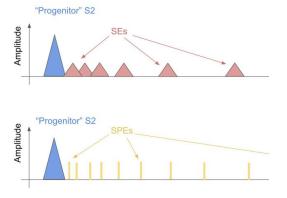


- 1. Selection of single scatters within a optimized fiducial volume.
- 2. Identify spurious signals:
 - Pulse-based cuts: S1 and S2 shape signal acceptance loss
 - b. Time-period cuts: exclude periods of detector instability - **small livetime impact**

3. Pulse trains cuts: Large S2s induce delayed emission of pulses

Periods after a large S2 are also excluded - large livetime impact

MS topology is excluded



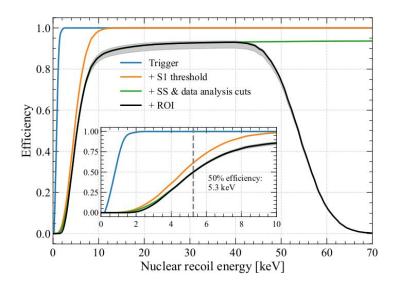
Data Quality Cuts

MS topology is excluded

- 1. Selection of single scatters within a optimized fiducial volume.
- 2. Identify spurious signals:
 - a. Pulse-based cuts: S1 and S2 shape **signal acceptance loss**
 - b. Time-period cuts: exclude periods of detector instability **small livetime impact**
- 3. Pulse trains cuts: Large S2s induce delayed emission of pulses lasting O(100ms)

Total livetime: 60.3 ± 0.5 days

Livetime (LT) impact cuts				
Cut name	Targeted effect	Impact		
Hot spot exclusions	Grid electron emission	3.1% LT removed		
Muon holdoff	Glow from TPC-crossing muons	0.2% LT removed		
E/ph-train holdoff	Glow from S2s	29.8% LT removed		
High S1 rate exclusions	PMT/HV(?) misbehavior	0.2% LT removed		
Bad buffer cuts	DAQ issue, caused by glow from muons & S2s	Deadtime hit, 0.5% LT removed, confirmed with GPS triggers and simple calculation from S2/muon rate		
Excess Area cut	Glow from ghost muons/S2s			
Sustained rate cut	Glow from ghost muons/S2s			
Burst noise cut	Electronics noise	Deadtime hit, < 0.001% LT removed		

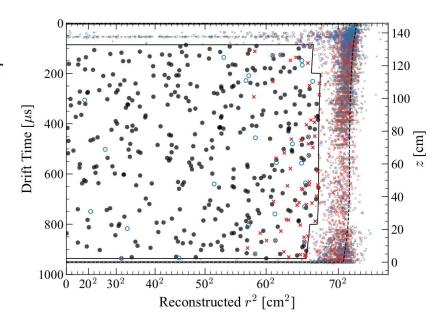


Signal Acceptance

- S2 trigger acceptance measured using:
 - Random triggers
 - DD generator data with pulsed plasma trigger
- S1 acceptance dominated by 3-fold coincidence requirement.
- Data selection acceptance measured with calibration sources
- Event classification efficiency measured by blind visual inspection of +1k neutron calibration events

50% acceptance above 5.3 keVnr

Uncertainty band (gray) from differences in cut acceptances as measured with different calibrations, and statistical uncertainties.

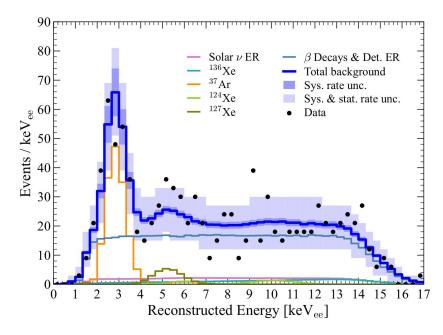


335 events passed the data quality cuts:

- Black dots: events passing all cuts.
- Gray dots: events passing all cuts except for fiducial volume.
- Red x: events vetoed by the LXe Skin detector (mostly ¹²⁷Xe)
- Blue circle: events vetoed by the OD.

5.5 ± 0.2 tonnes fiducial volume (FV):

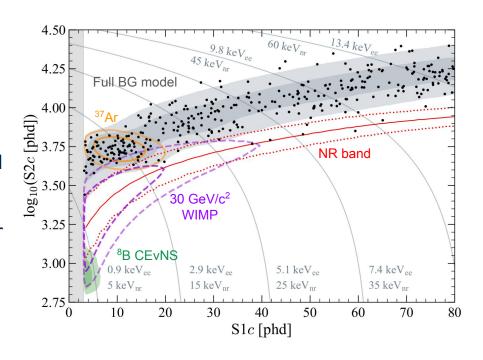
- Total SR1 exposure of 330 tonne days
- Skin veto improved radial acceptance significantly.



All backgrounds are within expectations.

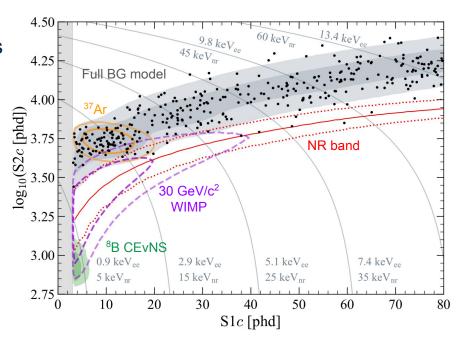
- Data agrees with the background-only model (p-value of 0.96).
- Data is shown as black dots. Expected range of stat fluctuations for best fit in blue.
- ³⁷Ar excess observed at 2.7 keV, consistent with projected rate and decay time.

Source	Expected Events	Fit Result
β decays + Det. ER	215 ± 36	222 ± 16
$ u \; \mathrm{ER}$	27.1 ± 1.6	27.2 ± 1.6
$^{127}\mathrm{Xe}$	9.2 ± 0.8	9.3 ± 0.8
$^{124}\mathrm{Xe}$	5.0 ± 1.4	5.2 ± 1.4
$^{136}\mathrm{Xe}$	15.1 ± 2.4	15.2 ± 2.4
$^8{ m B}~{ m CE} u { m NS}$	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	273 ± 36	280 ± 16
$^{37}\mathrm{Ar}$	[0, 288]	$52.5^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30\mathrm{GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total	_	333 ± 17
	<u> </u>	<u> </u>



Observed 335 events for an exposure of 331.65 tonne day.

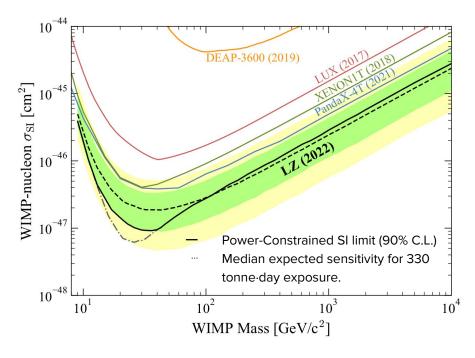
- S1 threshold: 3 phd +3-fold coincidence
- S2 threshold: 600 phd (>10 e⁻ extracted)
- Shaded gray bands: 1σ and 2σ contours of the combined ER background sources
- Red solid and dashed lines: NR median and 10% - 90% contours
- Dashed purple lines: 1σ and 2σ contours for an expected 30 GeV WIMP signal
- Orange contours: ³⁷Ar component
- Green band is ⁸B CEvNS signal region



Using the Phystat recommendations for statistical and astrophysical conventions (Eur Phys J C (2021) 81:907)

- ★ Frequentist, 2-sided profile likelihood ratio (PLR) test statistic, 90% confidence bounds
- ★ Signal rate must be non-negative
- ★ Local density of DM: 0.3 GeV/cm²
- \star v₀ = 238 km/s; v_{esc} = 544 km/s
- \star Power constraint* at $\pi_{crit} = 0.16$

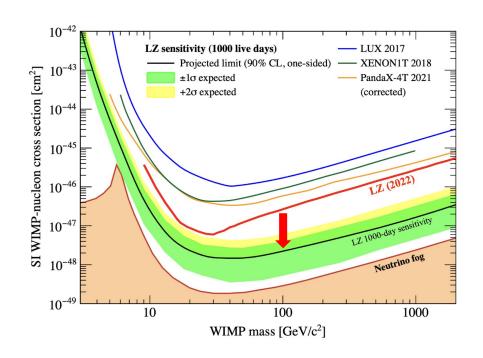
Extended unbinned profile likelihood statistic in the $\log_{10}(S2c)$ -S1c observable space.


*Power-Constrained Limit redefined using "rejection power" (arxiv:1105.3166)

No evidence for WIMPs at any mass.

- Power-Constrained critical threshold set to ~1 sigma*
- 90% CL upper limit on WIMP-nucleon cross section
 - $\sigma_{SI} < 9.2 \times 10^{-48} \text{ cm}^2$ @ 36 GeV/c²
- World-leading sensitivity to WIMPs
 - ~3× improvement at 30 GeV/c²
 - ~1.7× improvement at 1 TeV/c²

*Power-Constrained Limit initially defined using "discovery power" as per Phystat recommendation. Updated to use "rejection power" (arxiv:1105.3166).

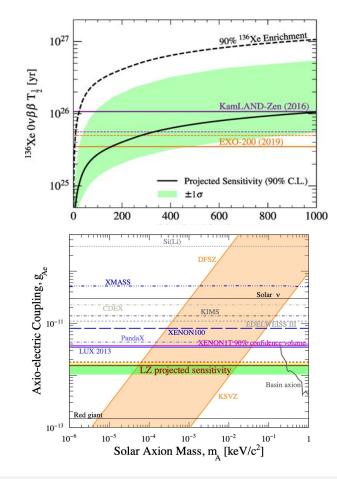

LZ plans to take 1000 live days of data (17× more exposure)

Probing the 10^{-48} cm² σ_{SI} range for the first time with only 6% of planned exposure,

→ Next science runs will cover unexplored WIMP parameter space!

Projected sensitivity 90% CL minimum (one sided) to $\sigma_{\rm SI}$

→ 1.4×10⁻⁴⁸ cm² at 40 GeV/c² for 1000 live-days and 5.6 t exposure.



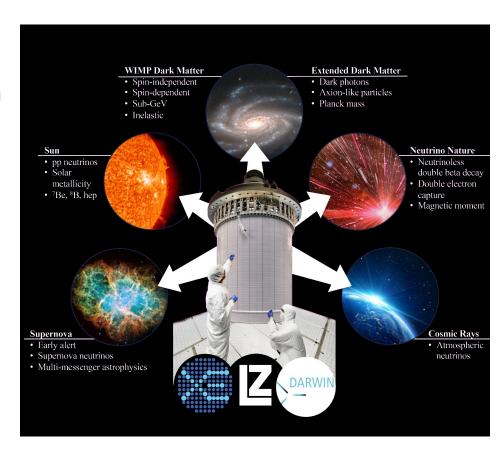
LZ plans to take 1000 live days of data (17× more exposure)

Lots of science to do in addition to primary DM search:

- Neutrinoless double beta decay in ¹³⁶Xe (<u>PRC.102.014602</u>) and ¹³⁴Xe (<u>PRC.104.065501</u>)
- Rare decays of other xenon isotopes
- Effective field theory couplings for dark matter
- Solar axions, ALPs, neutrino magnetic moment (PRD.104.092009)
- Low mass dark matter searches (S2-only, Migdal effect)
- Leptophilic dark matter
- Mirror dark matter

After LZ: XLZD 3rd generation detector

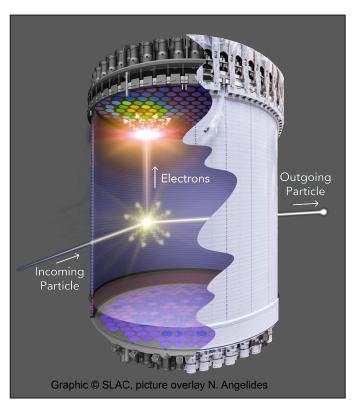
XENON, LZ and DARWIN collaborations took the first steps for a joint 3rd generation experimental effort to probe WIMP DM down to the neutrino fog with a hundred-tonnes scale xenon detector.


Very productive XLZD meetings:

- First meeting Summer 2022 at KIT;
- Second meeting Spring 2023 at UCLA.

White paper (2203.02309)

Broad science reach \rightarrow


See talk by Alex Lindote tomorrow at 10:20 am

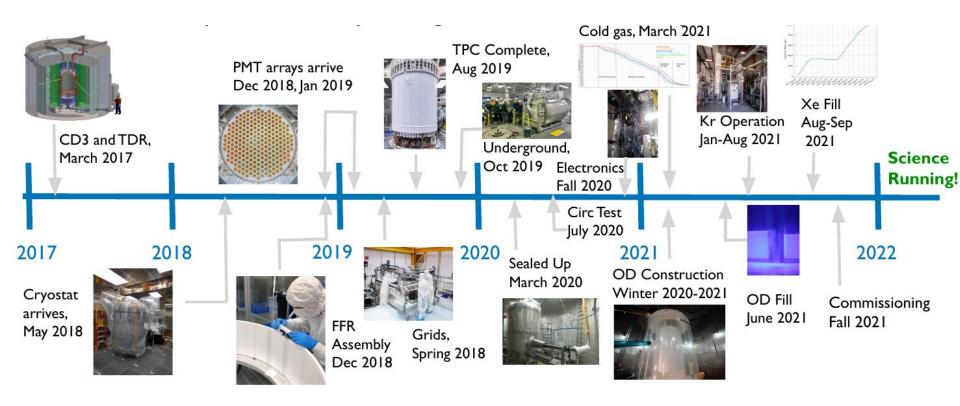
Thank you!

Find more graphics here or directly contact Nicolas (UCL)

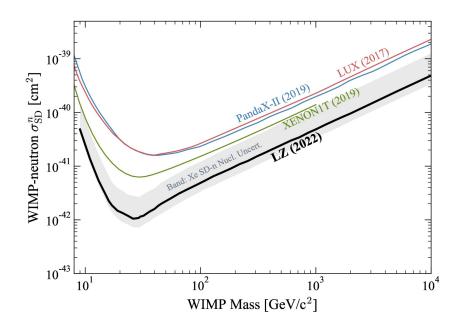
Thanks to our sponsors and 37 participating institutions!

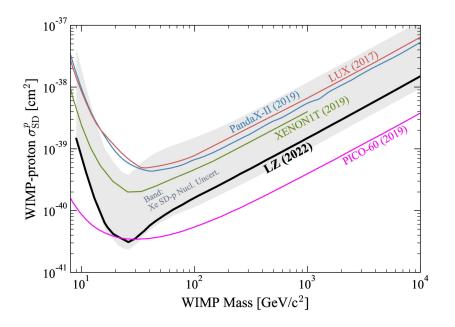
U.S. Department of Energy
Office of Science

Science and Technology Facilities Council



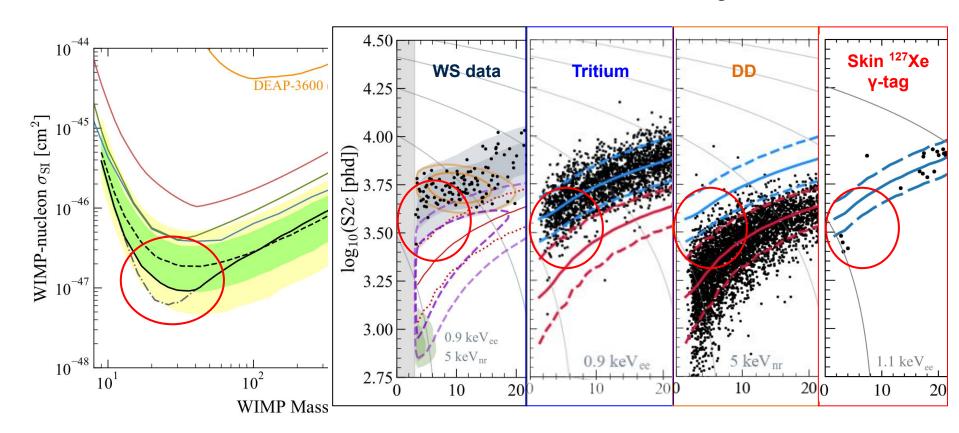
Construction, Deployment and Commissioning



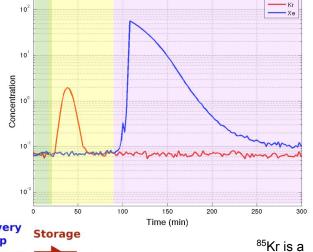


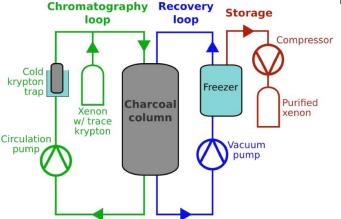
Spin-dependent WIMP-neutron scattering and spin-dependent WIMP-proton scattering

Uncertainty band represents theoretical uncertainty on nuclear form factor for Xe



Downward fluctuation in the limit → under fluctuation of the background.

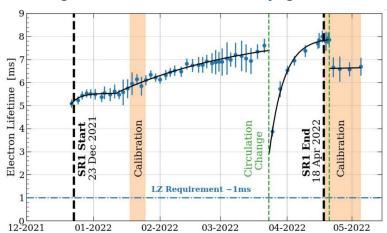


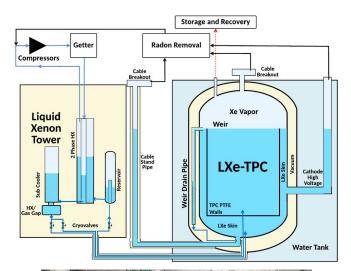

Kr Removal System

- Gas chromatography to remove Kr from Xe
 - in situ mass spectroscopy measurement of 144 ± 22 ppg g/g ^{nat}Kr/Xe
- natAr to a negligible level
- Major operations from January to August 2021
- Continuous purification underground

beta-emitter with 687 keV endpoint

Xenon Circulation System & Cryogenics




Designed to circulate gas at 500 slpm

- Turnover full Xe mass every 2.4 days
- Up to 600 slpm demonstrated

Purification using hot zirconium getter

- Purity ≡ electron lifetime (ELT)
- LZ requirement ELT> 1ms (maximum drift time)
- During SR1 ELT consistently greater than 5 ms

Argon-37 electron capture with $T_{1/2}$ = 35 d and monoenergetic 2.8 keV ER deposition

- Naturally occurring in the atmosphere via
 ⁴⁰Ca(n,α)³⁷Ar*, or cosmic spallation of ^{nat}Xe
- Equilibrium values range from 1-100 mBq/m³
- Expecting O(100) ³⁷Ar events in SR1
 [2201.02858]

"Accidentals": Pairing of random isolated S1s and S2s that mimic real single scatters

- Isolated S1s (~1 Hz), isolated S2s (~10⁻³ Hz)
- Events with <u>unphysical drift time</u> used to constrain the accidentals rates
- Efficiency of data quality cuts to remove accidentals: >99.5%
- Data-driven accidentals BG: 1.2 ± 0.3 events

S1c [phd]