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Gravitational waves (GWs) are ‘ripples Wdthe space-time, propagatlng at the
speed of light, caused by some of the most vio enLand energetlc processes in the Unlverse
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Network of terrestrial GW detectors




First direct detections of GWs

First GW direct observation by
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black hole coalesce
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Observing runs and GW detections
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Detection prospects for O4:
* Up to three time more events than in O3

* Improvement of the source localization
* Many other BNS events

My thesis




Detection of gravitational waves

The most sensitive ground-based instrument is
a km-scale Michelson interferometer whose
mirrors are free-falling masses, i.e. suspended.

The gravitational wave induces a variation of

the differential length of the arms, seen by a
detector at the output port.
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Detection of gravitational waves

The most sensitive ground-based instrument is
a km-scale Michelson interferometer whose
mirrors are free-falling masses, i.e. suspended.

The gravitational wave induces a variation of
the differential length of the arms, seen by a
detector at the output port.

The GW amplitude or strain is given by:
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Detection of gravitational waves

Gravitational waves signals are ‘hidden’ by several noises

h(t) = + noise(t)
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Real interferometer

Laser @
1064 nm
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* Suspended mirrors to filter seismic noise
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Real interferometer

* Suspended mirrors to filter seismic noise

 Whole system in vacuum (10 mbar) to avoid
the gases refractive index variation

Laser @
1064 nm
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Real interferometer

* Suspended mirrors to filter seismic noise

 Whole system in vacuum (10 mbar) to avoid
the gases refractive index variation
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Real interferometer

* Suspended mirrors to filter seismic noise

 Whole system in vacuum (10 mbar) to avoid
the gases refractive index variation

wX €

v * Fabry-Perot cavities to increase the effective
Laser @ length of the arms
1064 nm PR 3 km

I < * Power Recycling mirror to increase the power
1 Tl circulating in the interferometer
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Real interferometer

Laser @
1064 nm

wX €

— SR

3 km

Suspended mirrors to filter seismic noise

Whole system in vacuum (10-% mbar) to avoid
the gases refractive index variation

Fabry-Perot cavities to increase the effective
length of the arms

Power Recycling mirror to increase the power
circulating in the interferometer

Signal Recycling mirror to amplify the
gravitational wave signal
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Real interferometer

IMC
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Whole system in vacuum (10-% mbar) to avoid
the gases refractive index variation

Fabry-Perot cavities to increase the effective
length of the arms

Power Recycling mirror to increase the power
circulating in the interferometer

Signal Recycling mirror to amplify the
gravitational wave signal

Input and Output Mode Cleaner cavities to
filter the laser beam
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Real interferometer
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Faraday
Isolators
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Suspended mirrors to filter seismic noise

Whole system in vacuum (10-% mbar) to avoid
the gases refractive index variation

Fabry-Perot cavities to increase the effective
length of the arms

Power Recycling mirror to increase the power
circulating in the interferometer

Signal Recycling mirror to amplify the
gravitational wave signal

Input and Output Mode Cleaner cavities to
filter the laser beam
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Noise sources

Fundamental noises

Thermal noise

Seismic noise

Newtonian noise

Quantum noise

Technical noises

Scattered light noise
Electronic noise
Control noise

Strain [1/vVHz]
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Noise sources

Quantum noise

Scattered light noise
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Quantum nature of light

Coherent state

The laser field in the quantum formalism is

E(t) = 2E, [(Xl + AXl) cos(wt) + (Xg — AXQ) sin(wt)}

Amplitude Amplitude Phase Phase
operator fluctuations operator fluctuations

2| —]

Coherent states are minimum uncertainty
states, i.e. their fluctuations according to
Heisenberg Uncertainty Principle are:

PhOtCl)-‘djeteCtOI' (AXl)Q (AX2)2 B 1—16
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Origin of quantum noise

Coherent state

Quantum noise arises from vacuum fluctuations
entering the output port of the detector.

Amplitude fluctuations (AX) accounts as
radiation pressure noise.

Phase fluctuations (AX,) accounts as

shot noise.
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Quantum noise reduction

Quantum noise can be reduced by introducing vacuum squeezed states from the output port of the detector.

Photo-detector

Phase
squeezed state

Squeezed states are minimum uncertainty states
whose fluctuations are reduced in one direction
and increased in the other with respect to the
vacuum states.

Vacuum squeezed states at the generic angle 9:

A X

Squeezing )
e-r .o 4

e’ £V Squeeze angle

Anti-squeezing r = squeeze factor
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Quantum noise reduction

Vacuum squeezed states have been injected in the GW detectors during the observing run O3.

Frequency independent squeezing (FIS):
* Reduced the quantum noise at high frequency
* Increased the quantum noise at low frequency
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Quantum noise broadband reduction

Frequency dependent squeezing (FDS) allows a broadband quantum noise reduction.

hepe(Q) = [, (Q) + h (Q)] - €7
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Quantum noise broadband reduction

The detuning of the cavity
Aw, needs to be equal to
the frequency Q where
h,,(€2) =h_(2)
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Squeezing degradation mechanisms

* Optical losses can be
modeled as a recombination of

the squeezing with a vacuum o @

state inside a beam splitter, 7777~ kel

resulting in a reduction of the " |

squeezing level. ui ¢
v

* Phase noise mixes the
fluctuations in the two
guadrature degrading the
measured squeezing level.
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Squeezing degradation mechanisms
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Strain [1/VHz]

Virgo upgrades between O3 and O4
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Main upgrades:

* Increase of laser power
from 25W to 33W

* Signal Recycling

* Frequency Dependent
Squeezing @ 25Hz

Other improvements:

* Low loss high finesse
Output Mode Cleaner

e Scattered light mitigation
31



My main contributions

® Scattered light noise
study and mitigation

Input Mode
Cleaner (IMC)

Faraday
Isolator

éﬂﬁ

B2

Low loss Output
Mode Cleaner

B5

Faraday
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Cleaner
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Filter Cavity (FC)

Faraday
Isolator

= Sgqueezed
I:I light source

#

Frequency-dependent
squeezing

Frequency dependent squeezing
implementation:

> Higher reduction of shot noise
> Reduction of radiation pressure noise

Optical losses reduction:

> New low loss output mode cleaner

Scattered light noise reduction:

> Study and mitigation of scattered light
on optical benches

> Measurement of scattered light with an
optical set-up at LAPP
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Outline

4. Frequency dependent squeezing system: installation and commissioning
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FDS system implemented in AdV+

i Full installation

completed in
April 2021

Virgo North arm

FCEB

Minitower
for in-vacuum

Microtower
for cavity end
mirror

Microtower

for cavity input
mirror

Microtower for
beam matching and




FDS system overview
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to align the IR beam
and to control the filter cavity

Local Oscillator (LO) beam: to perform
squeezing measurement

Green beam: control and automatic
alignment of the filter cavity, control of
suspended benches

ITF spurious beam: to overlap the
squeezed beam with the ITF beam:

» alignment (beam tilt and shift)

* mode matching (beam parameters)

35




FDS system timeline
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FDS system timeline

SQB1 at SQB2 at FDS system First FDS_ First FDS First FDS
LAPP and LAPP and aligned and FC locked demonstration measurement  measurement
on site on site FC locked on IR detuning beating the at 25 Hz

on green ~300Hz shot noise
Jan April June Oct Nov Feb June
2021 2021 2021 2021 2021 2022 2022
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Pre-installation of suspended benches at LAPP

(2) [um]
TR . F
< N

1900
° w, data
° w, data
1800+ w, fit — w, = 1395 um atz, = -3.906 m
’E\ — w, fit—w, =1322umatz =-3.965m
351700+
N
o 1600+
g 1500+
[
m
1400
1300 : , :
-4 -2 0 2

Propagation along z axis (m)



Commissioning of suspended benches on site

; SQB1 angular dofs controlled with
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FDS system timeline

SQB1 at SQB2 at FDS system First FDS First FDS First FDS
LAPP and LAPP and aligned and FC locked demonstration measurement  measurement
on site on site FC locked on IR detuning beating the at 25 Hz

on green ~300Hz shot noise
Jan April June Oct Nov Feb June
2021 2021 2021 2021 2021 2022 2022
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Position Sensor Devices to control the suspended benches

Alternative strategy to control the suspended benches: to sense the bench angular degrees
of freedom with respect to the beam rather than to the LVDTs referred to ground

v Test, installation and alignment
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Position Sensor Devices to control the suspended benches

v Angular dofs reconstructed from the PSDs signal

1. Bench displacements (in TX, TY,

2. Sensing matrix (M_=M_1) - cﬂf‘ = M, - PSD

Sensing with:
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PSDs:
sensing matrix M

PSDs:
sensing matrices M_

and M.

) — coefficient matrix M_

400 0
_ _ _ 150
© o el
© 300 ©-100 | 100
= = =
200 -200 50
200 400 600 800 1000 200 400 600 800 1000 0 200 400 600 800 1000
Time [s Time [s Time [s
200 100 400
el _ o NN
T 150 T T 300
o ® 0 . v .
=100 = =200
50 -100 100
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Time [s] Time [s] Time [s]
400 -50 0
160
S 350 = S -500
® © -150 o
3 300 3 = -1000
-200 [——soB11Z ]
250 -250 -1500
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Time [s] Time [s] Time [s]

42




Position Sensor Devices to control the suspended benches

v Suspended benches angular sensing with LVDT + PSD and correction on LVDTs
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FDS system timeline

SQB1 at SQB2 at FDS system First FDS First FDS First FDS
LAPP and LAPP and aligned and FC locked demonstration measurement ~ measurement
on site on site FC locked on IR detuning beating the at 25 Hz

on green ~300Hz shot noise
Jan April June Oct Nov Feb June
2021 2021 2021 2021 2021 2022 2022
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Homodyne detection principle

The homodyne detection cancels the photodiodes common classical noises through the
interference of two beams: the Local Oscillator (LO) beam and the detected beam.

o= The output beams are:
Local 7 i A 1 A
_ b~ et R 1 4 B .
Oscillator C= —(a + b) d= —(CL o b)
a~doa V2 V2
Detected The detected quantity is:
beam

Pi—P=¢le—did=2-R(@-b) x 8- da
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FDS homodyne detection
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First FDS demonstration @ 360 Hz
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Scattered light noise origin

Scattered light is generated by the
LO beam diffused by the homodyne M6 0p(t)  FILTER CAVITY
photodiodes. Homodyne > [| D

- v > P
It propagates along the optical M4 a(t) ai(t)
system and it is modulated by the
difference in path length da(t) + ? _
3@(t) between the LO beam and the ‘Vj — tgczl;fecr'gztﬁé&o)
scattered light field. PD1 %DZ

. . . ‘ ‘ —From EQB‘l
This results in a noise at low Vi/ A r—
frequency on the differential channel

of the homodyne detector. e
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Frequency [Hz]




Scattered Light Loop implementation

| implemented a feedback control loop 50(t
(SLL) to compensate for the path length M6 |(p(| ) FILTER CAVITY
Homodyne [| l]

difference da(t) + o(t).

. . \ 4 > y=
* A modulation at 500Hz is sent to the (? — |- M4 ) da(t)
actuator on M4.
S/am—
» The differential homodyne signal is (vj
demodulated at the same frequency to PD1 PD2

obtain the error signal.

« ltis filtered and sent to the actuator on < @
M4 to correct the scattered light noise. >00Hz

SERVO

- | ocal Oscillator (LO)
- O scattered light

==== SQZ beam 50




Scattered Light Loop performance

~120 Hz Detuning

> 25 dB reduction for [ —Asoz siior
the shot noise - - -ASQZ - SLLON
30k ——Shot Noise - SLL OFF ||
. = = =Shot Noise - SLL ON
Results: _ /\ ~""507 - sit oF
* Reduction of 25 dB for shot noise 5L~ - - -5QZ - SLLON
measurements; \
e SLL can be used during squeezing 20 -

measurements.

Next steps:
* Replacement of the actuator with one
with higher dynamic range.

Noise [dB/Hz]

' ';‘i'-.*ﬁ;?jilif#! -'f-}':ﬂ'i o

-10 , . L] , , L] , . R R |
10° 10* 107 10°
Frequency [Hz]
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Filter cavity lock precision improvement

Before:
> Filter cavity locked acting ONLY on the cavity end mirror

» ~ 8 Hz of lock precision

After:
~ Filter cavity locked acting BOTH on the cavity end mirror and the squeezer laser frequency

> ~ 1 Hz of lock precision

10!
( ~1Hz of lock precision )
10" P e
f_ SERVO SERVO T
— —" \ A ;
nta ITF Mai = et I ﬂl 1 |
‘ ain = S 11 ‘
o Laser pick-off 3 2 L t\,f A i ‘)j W)UM' ! :
— ~:.10 = VAN Y
T Al YV
103 NN
N— Filter Cavity e —IR lock precision
| 10 ---IR lock precision rms
EOM —IR lock precision computed from green
FDS Main Laser ---IR lock precision computed from green rms,
10°°
10° 10* 10° 10°

Frequency [Hz] 52



FDS system timeline

SQB1 at SQB2 at FDS system First FDS First FDS First FDS
LAPP and LAPP and aligned and FC locked demonstration measurement  [measurement
on site on site FC locked on IR detuning beating the at 25 Hz

on green ~300Hz shot noise
Jan April June Oct Nov Feb June
2021 2021 2021 2021 2021 2022 2022

Milestone!
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FDS measurement at 25 Hz

Main improvements:
* Lock precision
 Different filter cavity alignment strategy

* Low seismic activity during summer
(stray light bump at < 10 Hz)

Results:
* Detuning: 25 Hz
* Optical losses: 14%

* Phase Noise: 25 mrad

Quantum noise reduction [dB]

i 1]

- -Simulated Anti-Squeezing
—Measured Shot Noise

—\ —Measured Anti-Squeezing

Tl - ST ‘ ‘ R I ‘ i i

101 25Hz 102 103 104
Frequency [Hz]
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Outline

5. Low loss Output Mode Cleaner: characterization, installation and commissioning
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FDS injection in ITF preparation

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVATAVATAY

o \;\‘Jx data
1400+ o Wy data ] 4 T
- . w, fit - w0 = 944.3 um at 2565.8 mm 1_M{2] 7 s
Beam from/to ITF characterized : . - w = 20466 23063 | I W
£ ,
> Beam from ITF measured on SQB1 ‘312007 SQB1_QD2
N o
- Beam from FC measured on SQB1 @
5 € == |TF spurious beam
Beam from FC to EQB1 measured & 1100 s €07 bieam
[aa]
1000} M
900} '
0 1 2 3 11
Propagation along z axis (m) iml=
In May 2022: e

Squeezed beam - ITF beam estimated mode matching ~ 84% :( Ll jeaE

Replacement of one mirror of the telescope on SQB1

In October 2022: ks -1- 7 )
Squeezed beam - ITF beam estimated mode matching ~ 99% :) | s |- .
Q’-;‘_--I.f._j_m_.______ ____________ p Bl{(?\:o;(;d nlgﬁe



Output Mode Cleaner replacement

Motivation: need to replace two output mode cleaners cavity with a single one to reduce detection losses

to maintain the squeezing performance

Reflection

Round trip length = 248 mm

JX g

Properties

03 OMC cavities

04 OMC cavity

Finesse (F)
Micro-roughness (ggns)

Radius of Curvature (p)

123
0.3 nm RMS
1700 mm

1000
< 0.1 nm RMS
1700 mm

Transmission Material Suprasil 3001 (fused silica) | Suprasil 3001 (fused silica)
P B ey B "
Ls 497} SDB1_M
Loss sources Measured | Target for O4 $0B1_OMp1_Ror o T
durlng 03 - kOC};‘O SDB1_Bisl_BD2 SDB1—"§\/
ITF-OMC1 matching 8% 3% [ o7
OMC1-OMC2 matching 2.5% 0 — e I
<y
i 0 0 = m— y
OMC internal losses 2% 1.5% , §0Bi Motz —> %ﬁ% = LI
Total losses 12.5% 4.5% \— |38 o sz

1_OMC1_Ref1




OMC characterization at LAPP

PDref * Alignment of the OMC

omMC * Lock of the OMC with

Low Finesse

PDtran <\ Peltier and PZT
9 * Laser frequency
stabilization with a low
N (;g finesse OMC spare
* Measurement of
> Finesse
. f=2%0mm f=-200mm  BS > Radius of curvature
IS § 74 » Internal losses
L aRar 4 el Modulator %
X)
F:'Drefl
PDtran
OoMC

High Finesse



OMC internal losses measurement at LAPP

Losses have been measured from power measurement with a calibrated integrating sphere:
Pr  Pr

P; P;

P_ measured locking the OMC with the PD in reflection
and averaging several measurements (same for P,).

L=1-

WegotL  =(2.0%0.1) %.

Losses source Value per round-trip
Suprasil absorption (7.5 £5) ppm The estimation of internal losses needs to be multiplied
Coating absorption (4 + 4) ppm by the number of round-trips inside the cavity:
: ) L =NXxL = (1.5 % 0.4) %.
Surface scattering (14 £ 2) ppm exp round trip
Rayleigh scattering (7.0 £ 0.5) ppm
HR residual transmission (2.5 £ 0.4) ppm The two values are in agreement.
Total (45 £ 12) ppm 59




Installations on SDB1

1. Low loss Output mode Cleaner

2. Motorized waveplates for a fine polarization tuning

== Alignment 1. k .
= Mode matching v i
== Polarization tuning




OMC loss budget

Alignment, mode matching and polarization tuning performed with direct beam from Virgo laser.

Alignment ~ 99.5% Mode matching ~ 99.3% Polarization tuning ~ 99.9%
V1:SDB1_B1_PD3 DC norm_Bis 50Hz  TIME Vi:SDB2_B1_PD3 DG 50Hz_ TIME V1:SDB2_B1_Cam_Image__ RAW N V_1 ZSDB27817PD37D0750H27T|T‘|E
; —_ ...... 3 5 {0 0 (<) OO ST S
I "OMC being i
- o ok - p-pol
,ﬂ____;.______r_e_a_l.|gne_d__ =y PSRN SRS RS DT S Y S
o s g / \
In_ ............ F
: 0_005_ ................................................
- i S
o ; ...... I - 14h5lu ...... | ___—'_/_/

L | v L L L L
07Th30 07h40 07Th50 02mS4 02mS56 02mS8 03m00 03mo2

1299422769.9200 : Mar 10 2021 14:45:51 UTC
1297063693.62040 : Feb 11 2021 07:2T:35 UTC 1294732990.7400 : Jan 15 2021 08:02:52 UTC
Losses Measured Target for O4 | Measured
during O3 for O4
ITF-OMC 8% 3% 1.2%*
OMC 1-2 2.5% 0% 0% * Misalignment: 0.5% +
Internal 2% 1.5% 2% Mode_ Migmatc_h: 0.64% +
Polarization mistune: 0.08%
Total 12.5% 4.5% 3.2% =1.2% 61




Squeezing loss budget: O3 vs O4

Injection losses 12.4% 9.4%
Detection losses 18.9% 9.7%
ITF losses ~ 4% ~ 5%
Total losses 35.3% 24.1%
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Outline

1. Gravitational waves: origin & detection

2. Quantum noise: origin & reduction strategy

3. The Virgo detector from the observing run O3 to O4

4. Frequency dependent squeezing system: installation and commissioning

5. Low loss Output Mode Cleaner: characterization, installation and commissioning
6. Scattered light noise: study and mitigation

7. Conclusions and next steps
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Stray light noise from suspended benches in O3

Stray light noise has been measured during O3
by introducing a displacement z (t) to the

suspended benches.

z (t)
+—>
Ein Eout
— e
—
E

Suspended _ Scattering

bench object

Stray light noise can hide the reduction of
radiation pressure noise brought by frequency-

10 18
hit) injection
hit) reference
B reference + scatter noise projection
10719} un
""fl.\, Il
'._
~N '|
L 10 S 1
S N
= b b
o
b 10 21 | ”.J!q
(V] 'J.\ !
L:"-“s [r
) 1
1022 | \ I| | ,
0 ' |
'\\L.’J |. 4 |
sl'l_,,‘ il gl St
T iyl iy’ ¥ W R VL RV
10723 i
10! 102

Stray light noise from SDB1 measurement during O3.

Frequency (Hz)

dependent squeezing!

Would it be the case during 04?7
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Stray light projection ingredients for O4

he(f) = VFr - E‘f - {Kna-,(f) - F [sin (47“(2“ + zr(f))ﬂ R G (f)nF [C“S (4;(3” +ﬂ))]}

F

Fourier transform of the phase | amplitude components of the bench displacement wrt to ITF reference,
with z (t) considered during high seismic activity periods during the commissioning for O4

z +2z(t)
Ein Eout
f— —
—
E, :
Scattering

object

65



Stray light projection ingredients for O4

A 4 41
h. =vfr —= . Ky, - F |sin | —(z0 + 2»(t K - F |cos | —(z0 + z(1
T’(f) f?" -Pin ng(f) X ( 0+ T'( )) - E(f) Y ( iler il“( ))
Phase Transfer Function Amplitude Transfer Function
The TF describes the opto-mechanical response of the detector
and depends on the optical configuration of the ITF in O4
107 : 5
SDBl TF —— Amplitude TF : Kn!_J(f]l :
106 L Phase TF : Kyp(f) |
107 F
%g 108 |

10-9 L

10—10 L

10—11 S | ] ] MR T SR A | ] ]
10! 102 10°

Frequency [Hz] 66



Stray light projection ingredients for O4

el P S f;a:: _ {Kni,(f) W = {Sin (4;(3“ + zf.(t)))} + Kse(f)-F [cns (4%(3[1 4 Er(t)))]}

F

Fraction of stray light re-coupled with the main mode of the interferometer: | f=f+ fo it fo +@‘“D
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Secondary beams mitigation for O4

Ghost beams are unwanted secondary beams due to not perfect Systematic ghost beams tracing and dumping
coating of optical components. for all the benches and pipes of AdV+.
Input beam
}shaz_e.wz SFEZ_GMB - SDB1 i iERN
/; ] L3 o8B L1z 953054 955 {:1331 e - : :
I |BZI‘ Reflected beam sasz BB2_M23
848 ris 857 | 856 855 o
I__ < ﬁ_ ###### J L,HN;I ————— M@
Ghost beam
10D.
107t
T 1072
N
= 162
E 104
O
= 10-°
0
v 107°
o
— 107
2 10 d=0-w(2)
Q4 2 o d=0.5w(z)
— d=1.0-w(2)
07 g=15-w(2)
1071

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 45 5.0
Aperture radius / beam radius




Secondary beams mitigation for O4

Mitigation strategies adopted for AdV+:

1.Wedge optimization

2. Diaphragms installation
3. Baffle installation

4. Absorbing disks behind mirrors
5. Diaphragms on quadrants
6. Small beam dumps
7.Dumpers on photodiodes
8. Lens tilting

9. Absorbing screws

distance from cavity axis [m]

Main beam (MB) and ghost beams (GB(IM) from Input Mirror, GB(EM) from End Mirror) propagating inside the Filter Cavity

=== Wug axis
; — Wy +2.5Wue, £3.0wug. =3.5Wyg




Stray light projection ingredients for O4

ok : 2 47 47
B F)= ol s ;u : {Knﬁ._(f) - F {Slﬂ (T(zu + z?‘(t)))} + K%(f) bk [CDS (T(En + zr(t)))]}
irn
Fraction of stray light re-coupled with the main mode of the interferometer: | f=f+ font fo +><
- f_is the light scattered by an optical surface - f,is the specular reflection
o fayieigh Is the light scattered from atoms/molecules
i : _
Incident beam — Hearangie l Rsr;er:\:z:f

scatter «—Specularly

Incoming beam
reflected beam

N\

Surface
roughness

N

«—Large angle scatter

PRty Reflected beam

Surface optical figure
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Estimation of fr for O4

|dentification of critical optical elements on the benches, example of SDB1 and SDB2:
* |lenses perpendicular to the beam;

* highly scattering objects.
@ Photodiodes

" * qu‘l\a.ezing : SDBZ

B5 |
—

From ITF
From

SDBE1

Blp -
[——— 3

‘f“' ——] e ~ IToEDB

To SDB2 ™




Estimation of fSC for O4

« Measurement of f_ with an optical set-up at LAPP using homodyne detection

s ST

Py AL(t)
Pi(t) — Py(t) = —=+/ fsc COS (27‘( ) -
1 ’ V2 A pmoostljtllfl)arn]tion ¢ scattering
() = Pa(1) AL(t) S b
_ Pi(t) - P(t) t scattered

A0 = BT Ry Vo (2” X ) ight
]

Var(A(t)) = fsc
=

» Estimation of the Bidirectional Reflectance 53750) %
Distribution Function (BRDF) as a function sosor,
of the incidence angle &
, BRDF(#)-\2

scanning
2 J
™ w(2) mirror

fscNOfp'
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Estimation of fSC for O4

We measured the BRDF(9), for angles larger than 500 purad.

+ Measurement - 2.1mm beam .
e [ BRDFG)
— Noise floor - 450um beam SDB1 quadrants (B5) 5deg | 3.5-1073
= eulaiee o : SDB2/SNEB/SWEB/SPRB quadrants | 5 deg 3
g SDB2/SNEB/SWEB/SPRB photodiodes | 20 deg | 4.9-10°
- SNEB/SWEB Silicon beam dump ldeg | 1.0-10°4

0 (rad)



Estimation of fSIO for O4

The specular reflection has been considered for the lenses perpendicular to the beam
and to decide how much to tilt the lenses (for example L2):

103
—— SDB1LL, #1
2 2 _ 2nD?*zB? 1 1 N --- SDB1LIL #2
p OR“z;exp { o D7+ == (D—R)2+22 10 “ — :v\tég tia :;
= ——— a,
. (D2 —+ 22) [(D — R)2 + Zz] - —— SWEB L1b, #1
0 0 10 |\ --- SWEB L1b, #2
‘ SWEB L2, #1
1061 SWEB L2, #2
| —— SPRB L2, #1
? D . 10-7 | --- SPRBL2, #2
Reflecting o
. Element Wl I
Incoming beam 1078
@, ! \
L vy S - S - N 10-°
10-10 1Y |
10—11
PRty Reflected beam
! 10—12 LA | | |
0.0 1.0 2.0 2.5 3.0

15
B [deg] 74



Stray light projections for O4

The projections have been performed on all the Virgo suspended benches.
The critical ones are SDB1 and SDB2.

SDB1

10718 ; 1018
~ fr =2- 10-9 SDB1 - f_measured in 03 4 - 10-10 SDB2 - f, measured in 03
e SDB1 - fr computed (from B1) 6 SDB2 - fr computed (from B1)
fr S 1.5 - 109 SDB1 - f_computed (from B5) 1 2 . 10 SDB2 - f_computed (from B5)
= 1020k . 04 goal = 1020} 104 goal
T 104 goal / 10 T [ lo4 goal / 10
E .... E
= ol _ = =l
& 10 e © 10 e
s T s T
m ..... m .....
10_24 | 10-24 L
- . 1014
f=4.1-10 f=32-10

10t
Frequency [Hz]

102

10!

102
Frequency [Hz]
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Future stray light mitigation actions

SDB1 possible actions and mitigation: SDB2 foreseen actions and mitigation:
* Measure the scattering of OMC and TGG at LAPP * Install beam dumps in front of the B5 quadrants
 Install the meniscus lens on a rotating mount since they are not used during the run

* Replace the OMC with a ring cavity
* Replace the TGG crystal by a less scattering one

B5 |

From ITF
From

SDB1

]

Blp

~ |ToEDB

|

E To SDB2
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Outline

1. Gravitational waves: origin & detection

2. Quantum noise: origin & reduction strategy

3. The Virgo detector from the observing run O3 to O4

4. Frequency dependent squeezing system: installation and commissioning

5. Low loss Output Mode Cleaner: characterization, installation and commissioning
6. Scattered light noise: study and mitigation

7. Conclusions and next steps
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Conclusions & next steps

Frequency dependent squeezing for O4 summary:

» Suspended benches installed and controlled

* Full system properly aligned and controlled

» First FDS measurement performed at 25Hz

* Squeezed beam pre-aligned and pre-mode matched with the ITF beam

Next steps in O4:

Injection of FIS/FDS in the ITF

Fine alignment and matching (transmission of the OMC)
Phase control of the squeezing in ITF

Angular control of the squeezing in ITF

Next steps in O5 / post O5:

* Further squeezing degradation reduction
» Squeezer in vacuum on SQB1 (less optical losses and scattered light noise)
78



Conclusions & next steps

New Output Mode Cleaner for O4 summary:

 OMC cavity characterized and controlled at LAPP

* OMC cavity installed and commissioned on site

» Detection losses reduced by a factor 2 with respect to O3
Next steps in O4:

* OMC automatic alignment to keep it aligned during the run

Next steps in O5 /| post O5:

* Replacement with a four mirrors bow-tie ring cavity to reduce internal losses
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Conclusions & next steps

Stray light study and mitigation for O4:

« Scattered light noise from suspended benches projected for O4

* Secondary beams on suspended benches mitigated for O4

« Scatterometer at LAPP used to measure light back-scattered by optics
Next steps in O4:

* Measure at LAPP the BRDF of TGG crystal and OMC cavity

* Measure the scattered light noise coming from the benches

« Mitigation by installing beam dumps in front of quadrants on SDB2
Next steps in O5 / post O5:

* New motorized mount for the SDB1 meniscus lens

* Replacement of critical elements with low scattering ones
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Quantum noise — semi-classical approach

_4F [hPuGrr v/g(f)

hy
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L -23 laser mirror
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Vacuum squeezed states generation

Vacuum squeezed states are generated by the interaction of the vacuum fluctuation with a
bright pump field inside a non linear crystal, called Optical Parametric Oscillator (OPO).

H = hwd'a + hopb' 4 ik (a%’f - 6;728)

X, A
mp = 2w
m .
X® e - — il —
_b A
W X1




Vacuum squeezed states degradation: optical losses

14
— L=5%
— L=10%
& 10) 12] — L=20%
i — 1 =30%
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I b = 10+ —— L=50%
©
1 S
(@)]
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& a d g
————— —> -———-> ;
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Vacuum squeezed states degradation: phase noise

Measured squeezing [dB]
1
o

—204

—— 6=0mrad
—— 6=5mrad
—— 6=10 mrad
—— 6 =30 mrad
—— 6=100 mrad
—— Shot Noise

\_/

5

10 15
Generated squeezing (ideal) [dB]

20

25



Construction of coefficient matrices: example of SQB1 TX

200 . . . . . . . -46 ‘ — , :
‘r_u': Data : : : : il 'rB : : Data
3 1o |l==Fit: y =242 x5QB1 TX + 6898 | 5 48T : - Fit sy = -0.0302 x SOB1 TX + 42.7 1
E E-501 -
SI of 1 252 1
2 Tisar |
-100 | .
: 256 |
[= % (=
-200 ’ 1 1 1 1 1 1 1 -58 1 I i 1 1 1 1
200 220 240 260 280 300 320 340 360 200 220 240 260 280 300 320 340 360
SQB1_LC_TX (urad) SQB1_LC TX (urad)
1000 T T T T T - — — - -60 - — r - - - -
6 Data i - o | : : Data |
S 500 |——Fit:y = 13.2 x SQB1 TX + -3866.7 1 3 80 — Fit:y=-0.15xSOB1TX +-74.8
E o | 3 -100 f A
cl c‘ -120 - 1
-500 b
> T 140 - 1
™ ™
2 -1000 | - 2 160t |
-1500 | I i | i | I -180 I I i I I I I
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150 T T ' ' . . ' 300 T T ' : : - -
Gl Data © Data
3100l Fit:y = 1.14 x SQB1 TX + -290.5 i 5250t —Fit:y = -0.891 x SQB1 TX + 393.0 |
E E 200! -
2 sot i 5
> ::: 150 F 1
m 0r B m
Ial L i
N Q 100
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SQBL1 reconstructions with sensing matrix M,

V1:5QB1_LC_TX_50Hz

V1:SQB1 LC_TY 50Hz

T T T 0 T T
3501 data . i ——data
reconstruction with full matrix g -20 F reconstruction with full matrix - T
reconstruction with semplified matrix e . a0 | reconstruction with semplified matrix e i
300 N - /
-60 weer T b
250 | 1 -80 | _ 1
- el
i -100 / i
200 - 1 1 1 1 I I 1 -120 - 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20
time (s) time (s)
200 V1:SQB1 LC TZ 50Hz V1:SQB1l LC_X 50Hz
. data -550 | \ data 1
i reconstruction with full matrix e reconstruction with full matrix
200 + reconstruction with semplified matrix | 4 . reconstruction with semplified matrix
-600
100 b
-650
s s s ‘ an S s
0 10 20 30 40 50 0 10
time (s) time (s)
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0 _\\ data ] — data
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-30 ‘ 700
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SQBL1 reconstructions with sensing matrix M
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SQBL1 reconstructions with sensing matrix M_
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From FIS to
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Quantum noise reduction

Quantum noise can be reduced by introducing vacuum squeezed states from the output port of the detector.

Squeezed states have smaller fluctuations in one
guadrature and larger in the other for the Heisenberg
Uncertainty Principle:
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FDS loss budget

Expected for O4 Measured in Measured in
November 2021 June 2022
Filter cavity RTL 40 ppm 31 ppm 31 ppm
Phase noise 20-60 mrad 30 mrad* 30 mrad*
Filter cavity rms length fluctuation <1Hz 8.3 Hz** ~ 1 Hz**
Filter cavity mode mismatch 2% 1% 1%
SC to OPA matching 2% 1% 1%
Propagation losses 2-3% 13-15% ~7%

* 30 mrad up to EQB1 does not include the extra phase noise due to the propagation in the ITF
** with 8Hz of frequency noise we can measure 4dB of high frequency SQZ in the ITF without spoiling the low frequency
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OMC characterization at LAPP : Finesse and RoC

Finesse and radius of curvature measured from the OMC temperature scans:

F___=1055+15

N

Pmax N
meas PDC — Z 5 ( )
L+ <2F) . 9 (277Lopty N ( ] 2Lgeo>>
— ] sin“ [ ———— — N arccos - —
= +
RoC___= (1689 +2) mm . : ’
20.5 0.5 r ;
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@ @ ot
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005} | > |
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Stray light measurement during O3

SDB1 - 0.002 . . . . .
1018 ppm  Noise injection on the bench to be in fringe
4 o wrapping approximation — excitation up to 25 Hz:
\"‘-»., reference + scatter noise projection
1019} nar.;,“;ﬂ
H\ | f?‘ 21}3(3
¥ 1020} ! hT(f) X TF(.f) for f = fma:c:
E - L\ fmaa:
E {'\WV(_‘L“JG ,
510 g ‘ - Measurement of f_for different benches:
.‘,C;ﬁ f
1022 | ¥\ . Bench | f. measured in O3
Ul%\.,,ﬁ,u-’ja’. I I iy SDB1 2.10~°
_— e ol s et SDB2 4.10710
L 102 SNEB 3.10°8
Frequency (Hz)
SWEB 5-1079

VIR-1155B-19
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Transfer functions for O4

SDB1/SDB2 B1 Transfer Function for 04
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SDB1/SDB2 B5 Transfer Function for 04
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Transfer functions for O4

SNEB Transfer Function for 04
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SWEB Transfer Function for 04
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BRDF measurements at LAPP

Results

larnbda 1.1E-06

Optical elliciency 4.3E-01 (using —5N50 beam spliller and olher losses, so this is expectad)

Interferometer visibility 8.5E-01 3.9E-01 4.4E-01

Measurement efficiency 3.9E-01

beam waist 1.6E-04 1.3E-04

waist position 1.3E-01 13E-01

Rayleigh range T.6E-02 5.0E-02

Object Position (m) Beam radius X Beam radius Y f sc BRDF (1 pol) comments

Tellon target 0.1 1.7E-04 1.5E-04 8.0e-07 1.5E-01

Teflon target 0.2 2.2E-04 2.2E-04 4. 3E-07 1.5E-01 S-pol, scatter in both polarization equally, expect BROF-0.16 per polarization
Teflon target 02 2.2E-04 2 2E-04 4. TE-O7 1.6E-01 P-paol

Taflon target 0.4 5.9E-04 7.2E-04 4. TE-08 1.4E-01 S-pol

ML filter (NENIR40E-C) 0.2 2.2E-04 2.2E-04 4.0E-10 L4E-04 S-pol, 3.3deg ADI

NI filter (NENIR40B-C) 0.2 2.2E-04 2.7E-04 1BE-11 5. 2E-06 P-pol, 3.3deg ADI

M filter (NENIRADEB-C) 0.2 2.2E-04 2.2E-04 9.0E-11 3.1E-05 S-pol, 18deg AQI

ML filter (NENIR40E-C) 0.2 2.2E-04 2.2E-04 1.6E-11 5.6E-06 P-pol, 1%deg AQI

MNewfocus 9808 anodized 0.2 2.2E-04 2.2E-04 1.8E-07 6.3E-02 A5deg ADI

Mewfocus 9809 vacuum 0.2 2.2E-04 2.2E-04 3.0E-08 1.0E-02 AGdeq AQI

SIN mount anoblack 0.2 2.2E-04 2.2E-04 2.2E-08 T.6E-03 45deqg ADI

Silcon beam dump 0.2 2.2E-04 2.2E-04 3.0E-10 1.OE-04 ldeg ADI, S-pol, measurement affected by scratch?

Sileon beam dump 0.2 2.2E-04 2.2E-04 1.1E-11 3.8E-06 ldeg AQI, P-pal, measurement affected by scratch?

LAPP QPD 0.2 2.2E-04 2.2E-04 1.0E-08 3.5E-03 ~5deq AQI, YAG-444-44 (Excelitas)

NIKHEE QFD 0.2 2.2E-04 2.2E-04 8.6E-06 3.0E+00 ADI as feet designed, ~5deg

Excelitas PD 0.2 2.2E-04 2.2E-04 1.4E-10 4.8E-05 AQ 20 deg (vertical inclination), S-pal for beam in bench referential
PD box window 0.2 2.2E-D4 2.2E-04 2.0E-11 7.0E-06 A 20 deg (vertical inclination), S-pol for beam in bench referential
Glass diffuser, 1500 grit 0.2 2.2E-04 2.2E-04 2 4E-08 8.3E-03 S-pol, ACH ~ 15deg? - with power meter measured BRDE~0.02

Glass diffuser, 1500 grit 0.2 2.2E-04 2.2E-04 1.0E-09 3.5E-04 P-pal

Interferameter visibility 9.0E-01 3.2E-01 G.2E-01

Measurement elficiency 5.4E-01

Object Position (m) Beam radius X Beam radius Y f sc BRDF (1 pol) comments M easu re m e nts Of B R D F
Teflon target 0.025 2.TE-04 3.0E-04 A4 4E-07 1.9E-01 S-pol

Tellon target 0.1 1.7E-D4 1.5E-04 11E-DG 1.4E-01 S-pol pe rform e d at LAP P by
Teflon target 0.125 1.6E-04 1.3E-04 1.3E-06 1.4E-01 S-pol M ICh a| WaS

Teflan target 0.15 1.7E-04 1.4E-04 1.3E-06 1.6E-01 S-pal 98



Estimation of fr for O4

Bench | f, measured in O3 | f, estimate for O3 | f, estimate for O4
6.4-10"1 (B1 1.5-1077 (B1
SDB1 2.1079 (¥) (B1) ’ (B1)
4.1-10710 (Bb) 4.1-10-10 (B5)
23.10-14 (Bl 3.2.10714 (Bl
SDB2 4-10710 (%) ) (BL) | (BL)
3.2-1077 (B5) 1.2-107% (B5)
SNEB 3.10°8 5.2-1078 (**) 1.67- 108
SWEB 5-1077 771077 () 2.16- 10"
SPRB - 1.6-10°7 1.6-10°7

(*) For SDB1 and SDB2 have been used the B1 transfer function.

(**) On SNEB it has been considered that one quadrant shutter was open in O3.
(***) On SWEB it has been considered that the quadrant shutters were both closed.
NB. the lenses L1a and L1b are considered perpendicular to the beam, L2 tilted.

@Yoshida, Hidetsugu, et al. "Optical properties and Faraday effect of ceramic terbium gallium garnet for a
room temperature Faraday rotator." Optics Express 19.16 (2011): 15181-15187

®Chen, Xu, et al. "Rayleigh scattering in fused silica samples for gravitational wave detectors." Optics

Communications 284.19 (2011): 4732-4737

SDB1.:

> TGG Rayleigh® = 3.1 - 100

> OMC Rayleigh®=8.6 - 1010

> Meniscus lens = 2.2 - 1019
(assuming 3 = 0)

SDB2:
~ B5 quadrants =6 - 107 (each)

SNEB/SWEB:

> LensesLla/Llb~3-10°
(assuming 3 = 0)

> B7/B8 quadrants ~ 6 - 10°
(each)

SPRB:
> Lenses Lla/Llb~3-10%
> B4 quadrants ~ 6 - 10° (each)
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Stray light projections for O4

Parameter 05 Initial post-O5 | VnEXT
Injected squeezing 12 dB 12 dB 15 dB
injection losses 6.5% 5.5% 1.8%
FC losses 30 ppm 30 ppm 20 ppm
Readout losses 6% 4.5% 2.5 %
Arm-cavity roundtrip losses 75 ppm 75 ppm 75 ppm
Signal extraction cavity (SEC) roundtrip losses | 1000 ppm | 1000 ppm 500 ppm
Phase noise 25 mrad 15 mrad 10 mrad
Mismatching squeezing - filter cavity 0.5% 0.5% 0.25%
Mismatching squeezing - interferometer 2% 1% 0.5%
Measured squeezing at high-frequency 5.5 dB 7.5 dB 10.5 dB

Stra
Strai
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10t 102 10t 102
Frequency [Hz] Frequency [Hz] 100



Squeezing loss budget in O5 / post O5

Parameter 05 Initial post-O5 | VnEXT
Injected squeezing 12 dB 12 dB 15 dB
injection losses 6.5% 5.5% 1.8%
FC losses 30 ppm 30 ppm 20 ppm
Readout losses 6% 4.5% 2.5 %
Arm-cavity roundtrip losses 75 ppm 75 ppm 75 ppm
Signal extraction cavity (SEC) roundtrip losses | 1000 ppm | 1000 ppm 500 ppm
Phase noise 25 mrad 15 mrad 10 mrad
Mismatching squeezing - filter cavity 0.5% 0.5% 0.25%
Mismatching squeezing - interferometer 2% 1% 0.5%
Measured squeezing at high-frequency 5.5 dB 7.5 dB 10.5 dB
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FDS characterization

||—¢=-21+£23", Ay= 39+43 1z
— = 16.24£1.2°, Ay = —56 + 23 Hz
SH ¢ =364+05°, Ay = 49+ 11 Hz

Noise relative to coherent vacuum [dB]

-10 q=——¢ = 67.3+£0.2°, Ay =401 £ 12 Hz —

12 | |=———¢ = 91.5£0.2°, Ay =-97 £ 17 Hz ]
- - -Model

14 O verall sensitivity improvement : : ]
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FDS characterization

||—¢=-21+£23", Ay= 39+43 1z
— = 16.24£1.2°, Ay = —56 + 23 Hz
SH ¢ =364+05°, Ay = 49+ 11 Hz

Noise relative to coherent vacuum [dB]
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FDS loss budget

0o

- |deal system
6 e e B o T e e s —Phase noise
o \ —Propagation losses
T, )4 Filter cavity losses
S ar 12 —Mismatching
e \\ —Length fluctuation
S 21 \ —All mechanisms
8 ' |- -Freq.independent squeezing
v 0 = \ |
(O] \
R \
8 _2 \\\ -
E ~
3 -4 e N
=
S 6 d
° /lﬁ
-8 e T T - =
r | L L L oo | L s L TR |
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FDS measurement in TAMA

' . — ; ' . 1 . .
126 —Homodyne angle: -2.2 + 0.2 deg, Cavity detuning: 42.6 + 0.5 Hz| |
—Homodyne angle: 15.5 + 0.1 deg, Cavity detuning: 69.2 + 0.3 Hz

Homodyne angle: 27.7 + 0.1 deg, Cavity detuning: 62.2 + 0.4 Hz
10+ —Homodyne angle: 39.4 + 0.1 deg, Cavity detuning: 60.4 + 0.5 Hz|
—Homodyne angle: 60.1 + 0.2 deg, Cavity detuning: 67.9 + 0.5 Hz

Homodyne angle: 92.8 + 1.4 deg, Cavity detuning: 71.4 + 1.3 Hz

g il &y Likbi P

"fn it e ond

50 100 SDD
Frequency [Hz] 105

Noise relative to coherent vacuum [dB]




Scattered light improvement

Implementation of a feedback control loop (SLL) to compensate the difference in path length da(t) + d@(t)

between the LO beam and the scattered light field. ~120 Hz Detuning
35 T

25 dB reduction ——ASQZ SLLOFF
A i for the shot noise o
<+—» 301 A - - -Shot Noise - SLL ON | |
Homodyne / ——5QZ - SLL OFF
v <+ <> 251 b ---5QZ-SLLON

e M4 3ai(t) dai(t)

S/am.

\

15

10 -

-
O
|_\
-
O
N
Noise [dB/Hz]

-I““u‘~

st
X @ e o UL NS
500Hz ° e
SERVO 5! T I

- | ocal Oscillator (LO) ) e S .
- O scattered light 10° 10t 102 10°
e = - SQZ beam Frequency [Hz]
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