20–24 juin 2022
APC laboratory, Université Paris Cité
Fuseau horaire Europe/Paris

Amortized variational inference for supernovae light curves

methods3
Non programmé
20m
Buffon Amphitheater (APC laboratory, Université Paris Cité)

Buffon Amphitheater

APC laboratory, Université Paris Cité

Amphitheater : 15 rue Hélène Brion 75013 Paris APC : 10 Rue Alice Domon et Léonie Duquet, 75013 Paris
Talk ML Methodology ML Methodology

Orateur

Alexis Sánchez (Universidad de Concepción)

Description

Markov Chain Monte Carlo (MCMC) methods are widely used for Bayesian inference in astronomy. However, when applied to data coming from next-generation telescopes, inference requires a significant amount of resources. An alternative is to use amortized variational inference, which consists of introducing a function that maps the observations to the parameters of an approximate posterior distribution. We evaluate this approach on a set of type Ia supernovae light curves from the Zwicky Transient Facility and show that amortization with a recurrent neural network is significantly faster than MCMC while providing competitive estimates of the predictive distribution. To the best of our knowledge, this is the first time this fast amortized framework is applied to supernova light curves. This approach will be essential when estimating the posterior of astrophysical parameters for thousands of light curves which will be observed by next-generation instruments such as the Vera Rubin Observatory.

Author

Alexis Sánchez (Universidad de Concepción)

Co-auteurs

Dr Guillermo Cabrera-Vives (Universidad de Concepción) Dr Pablo Huijse (Universidad Austral de Chile) Prof. Francisco Förster (Universidad de Chile)

Documents de présentation

Aucun document.