TPC calibration: rates of events and time estimation

Presentation au DAQ Meeting - 7th of December, 2021

Huge thanks to A. Kish and V. Goicoechea for sharing their code !!

Marie van Uffelen (PhD), Fabrice Hubaut \& Pascal Pralavorio - CPPM, Marseille, France

The calibration guide tube system

- System that enables the circulation of calibration radioactive sources around the TPC during the calibration runs
- Tubes: $\varnothing=3 \mathrm{~cm}$ and $\mathrm{th}=1.5 \mathrm{~mm}, 3 \mathrm{~cm}$ (side), 1 cm (bottom) from the TPC
- Computation of rates of events/ decay of the source
- Calibration: we focus on:
- NR: pure NR single scatters (SS)
- ER: single scatters (SS) with energy around the energy of the photon provided by the source

Photon sources - ER calibration (1e7 evt) - Side

${ }^{22} \mathrm{Na}$ simulation in the DS20k TPC					

$\bigcirc 60{ }^{60} \mathrm{Co}$ simulation in the DS20k TPC

Photon sources - ER calibration (1e7 evt) - Side

The spectra at the bottom of the TPC are essentially the same but with lower rates

Neutron sources - NR calibration (1e6 evt) - Side

- NR calibration: particularly important. Should be able to have pure NR SS events in the Region Of Interest (ROI) for the WIMP search ($30<\mathrm{E}<200 \mathrm{ke} V_{n r}$) and in the Fiducial Volume (FV) of DS20k (veto 70 cm in z and 30 cm in r)

Neutron sources - NR calibration (1e6 evt) - Side

The spectra at the bottom of the TPC are Lr

Rate of events

Rate of events - NR - Further investigation

| Source | Initial neutron
 energy | Rate plan C
 Side | Rate plan C
 Bottom | - R O I c u t :
 R a tes a re |
| :---: | :---: | :---: | :---: | :---: | :---: |
| reduced by a | | | | |

Calibration strategy - Time estimation

- Goal: Estimate the time needed to perform the calibration with 10k gold plated events per position (SS in the peak (ER) / pure NR SS (NR))
- Ex of 57Co: 10k gold plated evt $=10 \mathrm{k}$ SS in the peak (red dashed events)

- 2 h of source handling +9 positions (3 on the sides +3 bottom)
- The DAQ saturates at 100 Hz (mostly saturated by any of all events in the TPC)
- Maximum source activity of 100 kBq if bandwidth lower than 100 Hz
- No hardware trigger

Calibration strategy - Time estimation

- Final goal: Estimate the time needed to perform the calibration with 10k gold plated events per position
- Assumptions:
- 2 h of source handling +9 positions (3 on each side +3 bottom)
- The DAQ saturates at 100 Hz
- No hardware trigger
- Maximum source activity of 100 kBq if bandwidth lower than 100 Hz

Source	57 Co	133 Ba	22 Na	137 Cs	60 Co	AmBe	AmC	DD
Activity Side $(100$ $\mathrm{Hz})$ kBq	18	1.9	0.36	2.2	0.36	0.14	0.15	0.19
Activity Bottom $(100 \mathrm{~Hz})$ kBq	100	5	0.67	4.6	0.6	0.18	0.18	0.23

Calibration strategy - Time estimation

*Extreme opposite scenario: having a gold-plated events trigger would reduce the calibration time to 2 days

Conclusion

- Calibration with plan C: Implies a loss of gold plated events w.r.t. plan A
- Long (2.75 months) calibration duration without hardware trigger
- Ideas to increase the rates of events:
- Window in the GdPMMA wall for neutrons ?
- Use the Compton edge for photons?
- Dedicated calibration stream from the DAQ ?

Light Collection Efficiency (LCE) in the veto buffer: impact of calibration tubes - plan C

December 2021

Marie van Uffelen (PhD) \& Fabrice Hubaut - CPPM

Methodology

- 200 jobs of 5000 events $=1 \mathrm{e} 6$ events
- 1 event $=1000$ photons ($\lambda=128 \mathrm{~nm}$ <=> E = 9.7 eV) generated isotropically and uniformly inside the veto buffer (VetoLAr2)
- Look at the number of photons seen by the SiPMs
- Derive the efficiency of the system = detected PE/ simulated photons (1000)

Code details

- g4ds: latest git version (from Oct 4) adding calibration tubes (to be submitted to git)
- Code returns plots and numbers about Light Collection Efficiency (LCE)
- In the full veto buffer
- In the octants where pipes are/are not

The "all" veto buffer corresponds to the

 whole volume of the veto, in all regionsTop region of the veto buffer
Cut = "z > 200.4075"
(lower limit of the veto in the upper side)

Side region of the veto buffer
Cut = " $z>-50 \& \& z<50$ "

Bottom region of the veto buffer
Cut = "z <-201.7050"
(Upper limit of the veto in the lower side)

TPB coated (+reflector)

LCE	Full Veto Buffer (\%):
$>$ all $=$	3.97
$>$ side $=$	4.04
$>$ top $=$	4.03
$>$ bot $=$	3.85
LCE	Octants with Pipes (\%):
$>$ all $=$	3.94
$>$ side $=$	3.99
$>$ top $=$	4.02
$>$ bot $=$	3.83
LCE	Octants without Pipes (\%):
$>$ all $=$	4.00
$>$ side $=$	4.08
$>$ top $=$	4.04
$>$ bot $=$	3.87

Errors on these numbers are $<1 \mathrm{e}-2$ (Gaussian statistical errors)

TPB coated (+ reflector)

XY cut-view of the number of photo-electrons

Presence of pipes are less but still seeable on Side (\& Bottom) plots

LCE = 4.04 \%

Top

PEN coated (+reflector)

LCE	Full Veto Buffer (\%):
$>$ all $=$	3.94
$>$ side $=$	4.00
$>$ top $=$	4.01
$>$ bot $=$	3.80
LCE	Octants with Pipes (\%):
$>$ all $=$	3.90
$>$ side $=$	3.95
$>$ top $=$	4.01
$>$ bot $=$	3.77
LCE	Octants without Pipes (\%):
$>$ all $=$	3.97
$>$ side $=$	4.05
$>$ top $=$	4.02
$>$ bot $=$	3.83

Errors on these numbers are $<1 \mathrm{e}-2$ (Gaussian statistical errors)
h1
h1_0

1000000 | - entire buAfalagr | 39.37 |
| :--- | ---: |
| - side veto | 6.324 | top veto bottom veto

Asymmetry	
	$\frac{\text { LCE }}{}$OctantsWithoutPipes LCE LCE OctantWithoutPipes
$>$ all $=$	2%
$>$ side $=$	2%
$>$ top $=$	0.2%
$>$ bot $=$	2%

PEN coated (+reflector)

XY cut-view of the number of photo-electrons

Presence of pipes are less but still seeable on Side (\& Bottom) plots

LCE = \%
19

Top

Reflector (ESR) alone

LCE	Full Veto Buffer (\%):
$>$ all $=$	4.00
$>$ side $=$	4.06
$>$ top $=$	4.03
$>$ bot $=$	3.90
LCE	Octants with Pipes (\%):
$>$ all $=$	3.99
$>$ side $=$	4.06
$>$ top $=$	4.03
$>$ bot $=$	3.89
LCE	Octants without Pipes (\%):
$>$ all $=$	4.01
$>$ side $=$	4.07
$>$ top $=$	4.04
$>$ bot $=$	3.90

Errors on these numbers are $<1 \mathrm{e}-2$ (Gaussian statistical errors)

Asymmetry	
	$\frac{\text { LCE }^{\text {OctantsWithoutPipes }}-L C E^{\text {OctantsWithPipes }}}{\text { LCE OctantsWithoutPipes }}$
> all $=$	0.5\%
$>$ side $=$	0.2\%
> top $=$	0.2\%
$>$ bot $=$	0.3\%

Reflector (ESR) alone

XY cut-view of the number of photo-electrons

Presence of pipes are less but still seeable on Side (\& Bottom) plots

Reference study of LCE

Study without pipes

- We studied the case where we do not have pipes inside the veto buffer in order to take it as our reference LCE (because pipes' coverage influences the octant where pipes are but also the ones where they are not)

Ref

Previous study
(UT = untreated steel, EP=
electropolished steel)
(https://agenda.infn.it/
event/29066/)
Relative loss of LCE

$\frac{\Delta L C E}{L C E}$	UT (\%)	EP (\%)	TPB (\%)	PEN (\%)	ESR (\%)
$>$ all $=$	9.4	7.9	1.7	2.5	0.99
$>$ side $=$	9.0	7.6	1.2	2.2	0.73
$>$ top $=$	4.9	4.0	0.5	0.99	0.49
$>$ bot $=$	14	12	3.0	4.3	1.8

Computed as $\frac{L C E_{\text {without-pipes }}^{\text {Full }}-L C E_{U T-E P-T P B-P E N-E S R ~}^{\text {Full }}}{L C E_{\text {without-pipes }}^{\text {Full }}}$

$\frac{\Delta L C E}{L C E}$	UT (\%)	EP (\%)	TPB (\%)	PEN (\%)	ESR (\%)
$>$ all $=$	11	9.2	2.5	3.5	1.2
$>$ side $=$	12	10	2.4	3.4	0.73
$>$ top $=$	5.2	4.2	0.7	0.99	0.49
$>$ bot $=$	14	12	3.5	5.0	2.0

ESR, PEN and TPB reflectivities

Comparison of all surfaces

Expected at 420 nm :
 Reflectivity: ESR > TPB > PEN

TDR Figure is equivalent to what is coded in g4ds

FIG. 42. Hemispherical reflectivity measured at 7° angle of incidence with a spectrophotometer equipped with an integrating sphere for: ESR, PEN air-coupled to ESR, TPB evaporated on ESR, TPB evaporated on ESR corrected for the spurious fluorescence component based on [49], and SiPMs (see legend)

Conclusion and perspectives

- UT : The tubes do reduce the inclusive veto LCE by 9.4% and cause an asymmetry between octants up to 6.5\%
- EP : The tubes do reduce the inclusive veto LCE by 7.9% and cause an asymmetry between octants up to 5.2%
- TPB: The tubes do reduce the inclusive veto LCE by 1.7% and cause an asymmetry between octants up to 2.2\%
- PEN: The tubes do reduce the inclusive veto LCE by 2.5% and cause an asymmetry between octants up to 2%
- ESR: The tubes do reduce the inclusive veto LCE by 1% and cause an asymmetry between octants up to 0.5\%
\Rightarrow The best solution looks to be ESR-only coated tubes

NR background

- Events after ROI cut and after FV cut

Location of energy deposit in TPC

Location of neutron emission

NR background

- Events after ROI cut but before FV cut

Location of energy deposit in TPC

Location of neutron emission

> No prefered position

NR background

- Events after ROI cut and after FV cut

Location of energy deposit in TPC

Location of neutron emission

NR background

- Events after ROI cut but before FV cut

Location of energy deposit in TPC

Location of neutron emission

> No prefered position

ER background: rates

- Rates in the TPC and in the veto (all events with deposited energy >0 in TPC / veto)

	$\begin{gathered} { }^{238} \mathrm{U} \\ \text { up } \end{gathered}$	${ }^{238} \mathrm{U}$ mid	${ }^{238} \mathrm{U}$ Iow	${ }^{232}$ Th	${ }^{235} \mathrm{U}$	${ }^{40} \mathrm{~K}$	${ }^{46} \mathrm{Sc}$
Activity for 17 kg Ti (mBq)	136	2.1	1360	2.1	6.2	10.2	53
Event depositing energy in TPC (\%)	1.0	1.0	1.0	1.7	0.36	1.2	16.8
TPC rate (Hz)	0.001	<0.001	0.01	<0.001	<0.001	<0.001	0.009
Event depositing energy in veto (\%)	11.8	11.8	11.8	18.8	18.9	14.4	97.4
Veto rate (Hz)	0.016	<0.001	0.16	<0.001	0.001	0.001	0.052

$>$ TPC rate $(\sim 0.02 \mathrm{~Hz})$ induced by the tubes fully negligible (TDR sum $=52 \mathrm{~Hz}$)
$>$ Veto rate $(\sim 0.2 \mathrm{~Hz})$ induced by the tubes very small (TDR sum $=135 \mathrm{~Hz})$

ER background: rates

- Energy deposited in the TPC

${ }^{40} \mathrm{~K}$

${ }^{46} \mathrm{Sc}$

Back up

Photon sources

Neutron sources - NR calibration - Bottom

Calibration strategy - Time estimation
 Computation

- Time computation: Take into account the ratio of "all events" over gold plated events
${ }^{57}$ Co simulation in the DS20k TPC

- First: let's compute the time needed to reach $\mathbf{1 0 0 0 0}$ calibration points:
- If the activity of the source doesn't saturate at $\mathbf{1 0 0} \mathbf{~ k B q}:$ Time $_{A<100 \mathrm{kBq}}^{10^{4} \mathrm{pts}}=\frac{\mathrm{Nb}-\text { points }}{D A Q-\text { frequency }}=\frac{10^{4} \mathrm{pts}}{100 \mathrm{hz}}=100 \mathrm{~s}$

If the activity of the source does saturate at 100 kBq , then the time has to be normalized by the rate of "all" events that saturate the DAQ: Time $A_{A=100 \mathrm{kBq}}^{10^{4} \text { ts }}=\frac{\mathrm{Nb} \text { - points }}{\text { Rate }- \text { of -all }- \text { events }} \cdot \frac{1}{\text { Activity }}=\frac{10^{4} \text { pts }}{8.8 \cdot 10^{-4} \text { events } / \text { decay }} \frac{1}{100 \cdot 10^{3} \mathrm{~Bq}}=114 \mathrm{~s}$

- Second: Multiply this time to the ratio of the rate of all the events occurring in the TPC over the rate of GP events: Time ${ }^{\text {1position }}=$ Time ${ }^{10^{4} p t s} \cdot \frac{\text { Rate }- \text { of }- \text { all }- \text { even }}{\text { Rate }- \text { of }-G P}$

$$
\text { ex of } 57 \mathrm{Co}(\text { side }): T \text { Time }{ }^{1 \text { position }}=100 \mathrm{~s} \cdot \frac{5.7 \cdot 10^{-3}}{6.2 \cdot 10^{-4}}=919 \mathrm{~s}=0.25 \mathrm{~h}
$$

- To finish : The time needed for one source is the sum of the handling time and the time needed on the side * 6 positions and the time needed at the bottom * 3 positions: Time ${ }^{\text {source }}=6 *$ Time $_{\text {side }}^{1 \text { position }}+3 *$ Time $e_{\text {bottom }}^{1 \text { 1position }}$

$$
\text { ex of } 57 \mathrm{Co}: \text { Time }^{57 C o}=3.67+6 * 0.38+3 * 0.52=7.5 h=0.3 d a y
$$

