17–23 oct. 2021
Village La Fayette - La Rochelle
Fuseau horaire Europe/Paris

First-forbidden $\beta$-decay study in the pnQRPA approach

21 oct. 2021, 14:00
23m
Village La Fayette - La Rochelle

Village La Fayette - La Rochelle

Avenue de Bourgogne, 17041 La Rochelle, France http://www.seminaire-conference-la-rochelle.org https://goo.gl/maps/c2X8hqd9maRShkCm8 The centre is located at about 5 km from the La Rochelle train station (Gare de La Rochelle) and at about 5 km from the La Rochelle airport (Aéroport de La Rochelle-Ile de Ré). The organization will provide a shuttle transportation from both the train station and the airport to the site in the evening of the first day, and from the site to the train station and the airport in the morning of the last day.
Nuclear Physics & Interdisciplinaire Nuclear Physics & Interdisciplinaire

Orateur

Arthur Beloeuvre (CNRS-IN2P3)

Description

First-forbidden beta decays play an important role in several domains of physics. First, in astrophysics, where nuclear data such as the half-life govern stellar evolution and nucleosynthesis [1]. Second, they are of interest for nuclear reactors physics as first highlighted in 2014 [2]. In first-forbidden $\beta$-decays, the form factor of the leptonic spectra are not equal to one as for allowed decays. It has been shown that it could have a non negligeable impact on the shape of the antineutrino energy spectra. Among the models developed since then, which do not all tend to agree [3, 4, 5, 6], some even state that it could solve the reactor antineutrino shape anomaly.
New theoretical calculations of the first-forbidden form factors associated to summation calculations [7] and dedicated experimental measurements would be useful to corroborate or negate already existing predictions.

Charge-exchange excitations corresponding to beta-decay first forbidden transitions in nuclei have been studied in the self-consistent proton-neutron quasiparticle random-phase approximation (pnQRPA) using the finite-range Gogny interaction [8]. No parameters beyond those included in the effective nuclear force are included. Axial deformations are taken into account for both the ground state and charge-exchange excitations.
With this formalism, nuclear matrix elements have been computed for operators derived from the multipole expansion of the weak current [9]: spin-dipole, anti-analog dipole and pseudoscalar-axial vector and tensor-polar vector operators. Those operators come to complete the already existing Fermi and Gamow-Teller operators already considered in Ref. [8] in order to have a simultaneous description of the allowed and first-forbidden $\beta$-decays.

At this conference, first results of the charge-exchange operators will be presented for both spherical and axially deformed nuclei with a comparison to other theoretical models.

References:

[1] M. Arnould, S. Goriely, and K. Takahashi. The r-process of stellar nucleosynthesis: Astro- physics and nuclear physics achievements and mysteries. Phys. Rept., 450:97–213, 2007.

[2] A. C. Hayes, J. L. Friar, G. T. Garvey, Gerard Jungman, and Guy Jonkmans. Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly. Phys. Rev. Lett., 112:202501, 2014.

[3] Dong-Liang Fang and B. Alex Brown. Effect of first forbidden decays on the shape of neutrino spectra. Phys. Rev. C, 91(2):025503, 2015. [Erratum: Phys.Rev.C 93, 049903 (2016)].

[4] X. B. Wang and A. C. Hayes. Weak magnetism correction to allowed β decay for reactor antineutrino spectra. Phys. Rev. C, 95(6):064313, 2017.

[5] X. B. Wang, J. L. Friar, and A. C. Hayes. Nuclear Zemach moments and finite-size corrections to allowed β decay. Phys. Rev. C, 94(3):034314, 2016.

[6] J. Petkovic, T. Marketin, G. Martinez-Pinedo, and N. Paar. Self-consistent calculation of the reactor antineutrino spectra including forbidden transitions. J. Phys. G, 46(8):085103, 2019.

[7] M. Estienne et al. Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes. Phys. Rev. Lett., 123(2):022502, 2019.

[8] M. Martini, S. Peru, and S. Goriely. Gamow-Teller strength in deformed nuclei within the self- consistent charge-exchange quasiparticle random-phase approximation with the Gogny force. Phys. Rev. C, 89(4):044306, 2014.

[9] Aage Bohr and Ben R Mottelson. Nuclear Structure. World Scientific Publishing Company, 1998.

Auteur principal

Arthur Beloeuvre (CNRS-IN2P3)

Co-auteurs

Marco Martini (IPSA and LPNHE) Sophie PERU (CEA) Magali Estienne (IPHC - CNRS/IN2P3) muriel fallot (Université de Nantes)

Documents de présentation

Aucun document.