Pulse finder algorithm

CENTRE DE PHYSIQUE DES
PARTICULES DE MARSEILLE

Emmanuel Le Guirriec

DarkSide CPPM Meeting

20 May 2021

Histogram form hits

1500
w 1000
2
500
’ j j j samples
50
01 ;\ I\h‘\ . arm N s . . P e
! T T Channel 1
1500
» 1000
g
500
D e - R —
j samples
50
D‘! . Jr\-h. f;\\m AI A M A 8 e A P S e —-— .y i
Channel 17
* 2D histogram
* Create hits histogram (width parameter for bining)
194
184
171
16 4
154
14
134
w 124
U 11 A
5 104
5 2
°]
5]
& 4
e
>
3
3]
2]
o
£ 10
AN A A WA AR A MW IANMAAAAAANIM AT AN prtrrrs A AN MM R MEAAN A AN A WA
’ o lDIDD ZDIDD 30‘00 40‘00 SDIDD EDIDD

samples

Julie “s code

0 10000 20000 30000 40000 50000

* Many steps in pulse_finder code

* Many not documented cases to characterize S1 and S2

Find S1 candidate

* Find all the bins where there is more then s1_min hits (7 with pyred)
— Should be a proportional parameter of the number of channels

* Compute the number of hits over X neighboring bins around the S1
candidate

— Xis hard coded (10 in pyred test)

* If the number of hits in the S1 bin is higher than the sum of hits in
neighboring bins of the hits, itis a S1 candidate

Prepare signal for mountains detection

* Remove very small isolated peaks of the hits histogram

* A moving median average is applied to the resulted signal

— rolling parameter is used fro windows

* Package peakdetect to find the local maxima and minima in some
noisy signal

Compute peaks and valleys with peakdetect

* atthe beginning and end of the signal a fake peak is added to force
valleys finding (not plotted)

— pre_gate parameter is used

Ll

* thesignalis time reversed and same peakdetect is applied.

.1 [0 ﬂ”ﬁlﬂ

_Lﬂ ﬂﬂﬂﬂ I (10 [WW ﬂf”rﬂ'lﬂpﬂﬂﬂ'ﬂ” Hﬂﬂﬂﬂﬂﬂl H”ﬂl'lﬂﬂ [10

Define mountains

30

25

- ~, s, J— TS . P W . -

1) 1000 2000 3000 4000 5000
samples

* With this two sets of peaks and valleys we can define mountains:
one peak with the closest base.

S . P W e - o

@ : L -
) 1000 2000 3000 2000 5000
samples

e We obtain 3 mountains

Saturated area

307, V“l [BERSE. T u LY ERTHTR I
I A‘Ill'l“ e ' ' lh? Jf'” i 7| b'{llil :|| }ﬂ \”' i Hn‘ ||“|"|
| Ill I : Ay |'|I f 'V “ vy il |||||i1

201 ‘ln“\ | ”| | ' l b II;, | r ”. e u IIH \w“fﬁﬁﬂ} | |\:
I|| lILRLHﬂIH;'I'HI'" W I : A | ' I i ¥ | |l ll‘ ! ” o - | : lll
o])‘:L',uqu‘ i b A S T
| | \ T |) Ii|PJ|| I !| Hi‘\ A (i M i JFi' i ‘H'inl'ﬂ | 1|| MI |'\|| [|:I| L

0 T 1

* Find large area where no peaks has been found
* Here we use the 2D histogram (per channel)

* Remove some peaks and valleys if long saturated area in many channels

— saturated_window = self.s1_window / 2 # Maybe a dedicated var needed

— Number of channels=3

* Should be a proportional parameter of the number of channels

* Saturated area: sign of S2?

Characterize the peaks

* Loop on mountains to characterize S1 and S2

— Check that S1 candidate is in mountain
— Compute the fraction prompt for S1

* fp_sl=(number of hits[ind_peak:ind_peak+2])/(total number of hits)
— Find peak of the mountain-> Good S1 if

* fp_s1>0.013 (hard coded (from pyred Julie))
— Other peaks are S2 candidates

e fp_s2=(number of hits within [ind_peak:ind_peak+10])/(total number of
hits)

* remove S2 iffp_s2>0.2 (hard coded)
* remove S2 if gate <100 (hard coded)

Merge S2 and resize S1 S2

* Step to merge close S2s

— Here also hard coded parameter to check if S2 are close

— If previous S2 is ending less than 200 bins before current S2 is starting
and 5 times more hits in current S2 than previous S2

— If previous S2 is ending less than 3 bins before current S2 is starting

* Step toresize S1 and S2

— Use s1_window and s2_window (from pyred)

Main method

def get_clusters(self, table):

hits_perch = table.reshape((-1,self.width,table.shape[1]))
hits_perch = np.sum(hits_perch, axis=1)
hits = np.sum(hits_perch, axis=1)

S1 candidates
= self.S1Candidate(hits)

#Remove very small isolated peaks

ma = np.convolve(hits, np.ones(self.rolling),
sip = ((hits== 1) & (ma== 1)).nonzero()[@]
hits[sip] =

#Find peaks and wvalleys
y = pd.Series(hits).rolling(self.rolling, center=True).mean()
(Peaks, Valleys) = self.DetectPeaksAndvalleys(y)

#Find if too many channels saturated during an identical long period
#More than 3 channels by default

#Period is 200 by default

Sat_Area = self.FindSaturatedSignal(hits_perch)

#Join peaks and valleys when a saturated area is found
self.JoinPeaksAndvalleys(Peaks, Valleys, Sat Area)

#Characterise the peaks

pulses = self.Characterizesi1S2(hits, Peaks, Valleys, 51)
#52 merging step

self.MergeS2(pulses, hits, prox = 3)

pulses = self.remove(pulses)

if len{pulses) =
nbins = hits_perch.shape[8]
self.ResizeS152(pulses, hits, nbins)

pulses[] pulses[]*self.width
pulses[] pulses[J]*self.width
pulses|[] pulses[J]*self.width

clusters = self.sort(pulses[[

Backup slides

Parameters in config.ini

* [pulse_finding]

- width =80 #(ns)
- s1_min =7
— rolling =3200 #(ns)

- sl_window =32000 #(ns)
- s2_window =120000 #(ns)

— pre_gate =240 #(ns)

Parameters not in config.ini

— Number of bins to calculate the number of hits around the the S1 candidate:
S1_neighbor_bins (5 on each side with pyred tests)

— Number of channels with long saturated period: nb_sat_channels (3 with pyred
tests)

— Number of bins to compute S1 fp: s1_bins_fp
— Minimal fraction prompt of S1: min_fp_s1

— Number of bins to compute S2 fp: s2_bins_fp
— Maximal fraction prompt of S2: max_fp_s2

— Minimal S2 gate (100): min_S2_gate

— Distance between end of S2 and next one combined with the ratio of number of
hits: s2_dist_hits_ratio(200, 5)

— Distance between end of S2 and next one: s2_dist (3)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

