
 1

Pulse finder algorithm

Emmanuel Le Guirriec

DarkSide CPPM Meeting

20 May 2021

 2

Histogram form hits

● 2D histogram

● Create hits histogram (width parameter for bining)

 3

Julie´s code

● Many steps in pulse_finder code

● Many not documented cases to characterize S1 and S2

 4

Find S1 candidate

● Find all the bins where there is more then s1_min hits (7 with pyred)

– Should be a proportional parameter of the number of channels

● Compute the number of hits over X neighboring bins around the S1
candidate

– X is hard coded (10 in pyred test)

● If the number of hits in the S1 bin is higher than the sum of hits in
neighboring bins of the hits, it is a S1 candidate

 5

Prepare signal for mountains detection

● Remove very small isolated peaks of the hits histogram

● A moving median average is applied to the resulted signal

– rolling parameter is used fro windows

● Package peakdetect to find the local maxima and minima in some
noisy signal

 6

Compute peaks and valleys with peakdetect

● at the beginning and end of the signal a fake peak is added to force
valleys finding (not plotted)

– pre_gate parameter is used

●

●

●

● the signal is time reversed and same peakdetect is applied.

 7

Define mountains

● With this two sets of peaks and valleys we can define mountains:
one peak with the closest base.

● We obtain 3 mountains

 8

Saturated area

● Find large area where no peaks has been found

● Here we use the 2D histogram (per channel)

● Remove some peaks and valleys if long saturated area in many channels

– saturated_window = self.s1_window / 2 # Maybe a dedicated var needed

– Number of channels = 3
● Should be a proportional parameter of the number of channels

● Saturated area: sign of S2?

 9

Characterize the peaks

● Loop on mountains to characterize S1 and S2

– Check that S1 candidate is in mountain

– Compute the fraction prompt for S1
● fp_s1 = (number of hits[ind_peak:ind_peak+2])/(total number of hits)

– Find peak of the mountain→ Good S1 if
● fp_s1 > 0.013 (hard coded (from pyred Julie))

– Other peaks are S2 candidates
● fp_s2 = (number of hits within [ind_peak:ind_peak+10])/(total number of

hits)
● remove S2 if fp_s2 > 0.2 (hard coded)
● remove S2 if gate < 100 (hard coded)

 10

Merge S2 and resize S1 S2

● Step to merge close S2s

– Here also hard coded parameter to check if S2 are close

– If previous S2 is ending less than 200 bins before current S2 is starting
and 5 times more hits in current S2 than previous S2

– If previous S2 is ending less than 3 bins before current S2 is starting

● Step to resize S1 and S2

– Use s1_window and s2_window (from pyred)

 11

Main method

 12

Backup slides

 13

Parameters in config.ini

● [pulse_finding]

– width = 80 #(ns)

– s1_min = 7

– rolling = 3200 #(ns)

– s1_window = 32000 #(ns)

– s2_window = 120000 #(ns)

– pre_gate = 240 #(ns)

 14

Parameters not in config.ini

– Number of bins to calculate the number of hits around the the S1 candidate:
S1_neighbor_bins (5 on each side with pyred tests)

– Number of channels with long saturated period: nb_sat_channels (3 with pyred
tests)

– Number of bins to compute S1 fp: s1_bins_fp

– Minimal fraction prompt of S1: min_fp_s1

– Number of bins to compute S2 fp: s2_bins_fp

– Maximal fraction prompt of S2: max_fp_s2

– Minimal S2 gate (100): min_S2_gate

– Distance between end of S2 and next one combined with the ratio of number of
hits: s2_dist_hits_ratio(200, 5)

– Distance between end of S2 and next one: s2_dist (3)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

