2–3 juin 2021
Fuseau horaire Europe/Paris

Phase-harmonic generative models for likelihood-free polarization foreground marginalization

2 juin 2021, 15:30
20m

Orateur

Dr Niall Jeffrey (École normale supérieure)

Description

I will present single frequency morphological foreground removal and denoising using deep learning (in a Bayesian likelihood-free framework) using phase harmonic augmentation. With only a single training image of polarized dust foregrounds, we are able to generate new realisations using wavelet phase harmonic synthesis. In a likelihood-free inference framework, these new realisations can be used for Bayesian foreground map-cleaning (using high dimensional Moment Networks) and cosmological parameter inference.

Auteur principal

Dr Niall Jeffrey (École normale supérieure)

Co-auteurs

Bruno Regaldo-Saint Blancard (Ecole Normale Supérieure) Francois Boulanger (Ecole Normale Supérieure) Erwan Allys (LPENS, Paris)

Documents de présentation