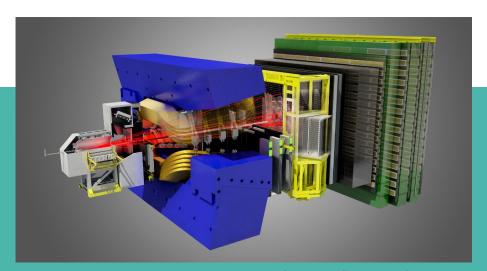
Recent highlights from the LHCb experiment and future prospects

Carla Marin, IJCLab LAPP Seminar - 15/01/2021

Content

• The LHCb Experiment

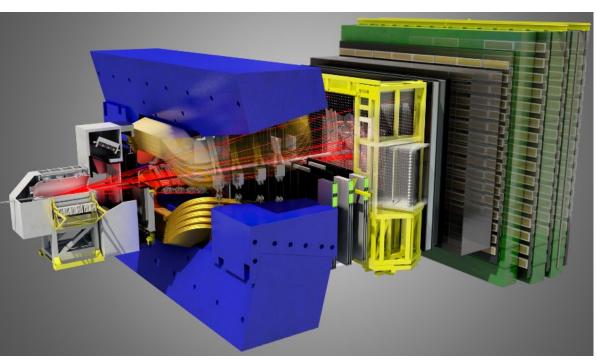

- Recent results
 - Rare decays of b-hadrons
 - Spectroscopy
 - CPV

Future prospects

Disclaimer: no time to cover everything, selected topics reflect my personal bias

The LHCb experiment

LHCb: Large Hadron Collider Beauty experiment



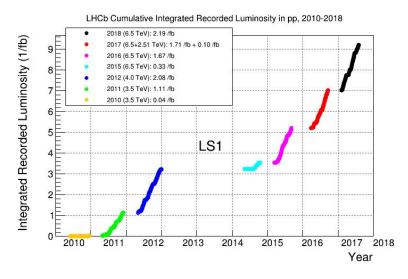
- Precision measurements heavy flavor physics
- Core physics: CPV and rare decays
- Much more: spectroscopy, QCD, heavy ions...

- > 900 authors and > 40 nationalities
- 87 institutes from 18 countries

Experimental setup

$$\Delta p / p = 0.5 - 1.0\%$$

 $\Delta IP = (15 + 29/p_{\tau}[GeV]) \mu m$


$$\Delta E/E_{ECAL} = 1\% + 10\% / \sqrt{(E[GeV])}$$

Electron ID ~90% for ~5% e→h mis-id probability

Kaon ID ~ 95 % for ~ 5 % $\pi \rightarrow K$ mis-id probability

Muon ID ~ 97% for 1-3% $\pi \rightarrow \mu$ mis-id probability

LHCb dataset

All b-hadron species!

$$ullet$$
 B $_{ extsf{S}}$: $rac{f_s}{f_d+f_u}=0.122\pm0.006$ *

$$ullet$$
 $\wedge_{ extstyle b}$: $rac{f_{\Lambda_b}}{f_d+f_u}=0.259\pm0.018$

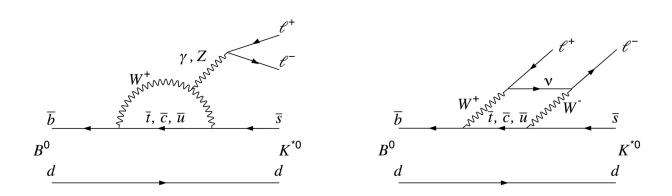
average over $p_T \in [4, 25]$ GeV and $\eta \in [2, 5]$ in pp collisions at 13 TeV [PRD100(2019)031102] and more: Ξ_b , Ω_b , B_c , B^* ...

*combination of LHCb results ongoing

Total recorded luminosity ~9 fb⁻¹:

- Run 1 (2010-2012) ~ 3 fb⁻¹
- Run 2 (2015-2018) ~ 6 fb⁻¹

$$\sigma^{13\text{TeV}}(pp \rightarrow B^{\pm}X)/\sigma^{7\text{TeV}}(pp \rightarrow B^{\pm}X) = 2.02 \pm 0.02 \pm 0.12$$


[JHEP 1712 (2017) 026] \rightarrow almost x4 b-hadrons in Run 2

Recent LHCb results

Recent LHCb results Rare decays of b-hadrons

Rare b-hadron decays

- FCNC sensitive to indirect effects of New Physics (NP) in loops
 - o branching fractions (BR), angular distributions, etc.
- Access to much larger scales than direct searches

Effective Hamiltonian approach

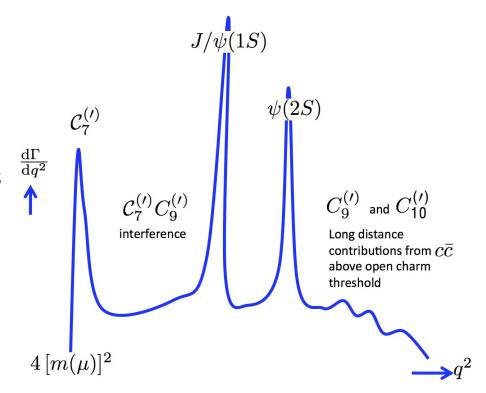
Model independent description in effective field theory [Buchalla et al.]:

$$H_{eff} \propto V_{tb}V_{ts}^* \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i'
ight)$$

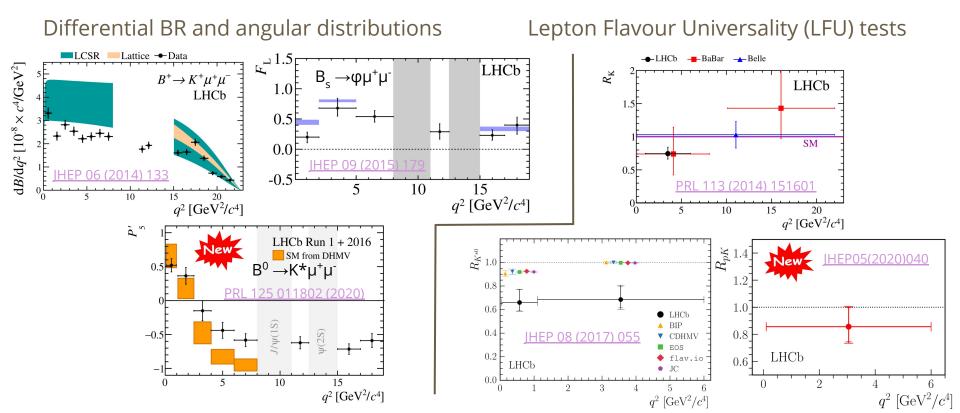
 O_i = 4-fermion operators, C_i = short distance, computed perturbatively Form factors needed to describe hadronization process

$$egin{aligned} O_7^{(')} &\propto (ar{s} \sigma_{\mu
u} P_{R(L)} b) F^{\mu
u} \ O_9^{(')} &\propto (ar{s} \gamma_{\mu} P_{L(R)} b) (ar{l} \gamma_{\mu} l) \ O_{10}^{(')} &\propto (ar{s} \gamma_{\mu} P_{L(R)} b) (ar{l} \gamma_{\mu} \gamma_5 l) \ O_S^{(')} &\propto (ar{s} P_{L(R)} b) (ar{l} l) \ O_P^{(')} &\propto (ar{s} P_{L(R)} b) (ar{l} \gamma_5 l) \end{aligned}$$

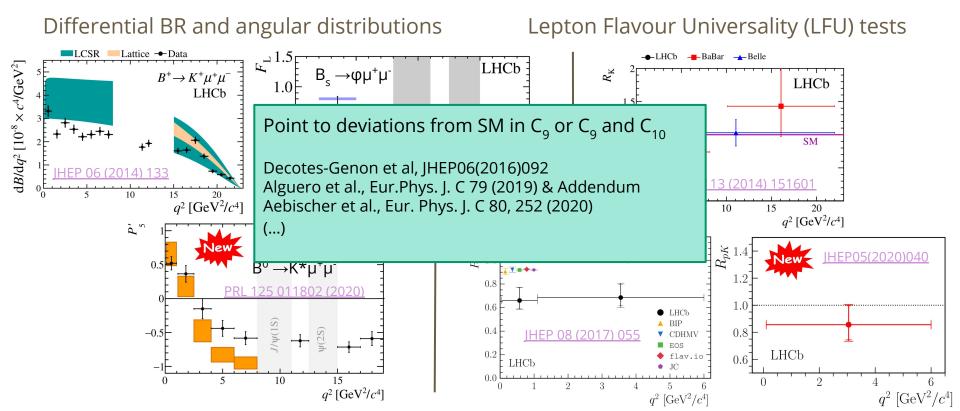
7	Wilson coefficients				
Transition	$C_7^{(')}$	$C_9^{(')}$	$C_{10}^{(')}$	$C_{S,P}^{(')}$	
$b\! o s\gamma$	X			50.	
$b \rightarrow \ell^+\ell^-$			X	X	
$b \rightarrow s \ell^+ \ell^-$	X	X	X		


Effective Hamiltonian

 $b \rightarrow sll$ sensitivity to Wilson coefficients varies with dilepton invariant mass, q^2


→ measurements performed in various bins and combined in global fits

Wilson coefficients


Transition	$C_7^{(')}$	$C_9^{(')}$	$C_{10}^{(')}$	$C_{S,P}^{(')}$
$b\! o s\gamma$	X			
$b \! o \ell^+ \ell^-$			X	X
$b\! o s\ell^+\ell^-$	X	X	X	

Intriguing deviations in rare b decays

Intriguing deviations in rare b decays

LFU tests

In the SM:

$$R_H=rac{BR(B
ightarrow H\mu^+\mu^-)}{BR(B
ightarrow He^+e^-)}=1$$

Experimentally:

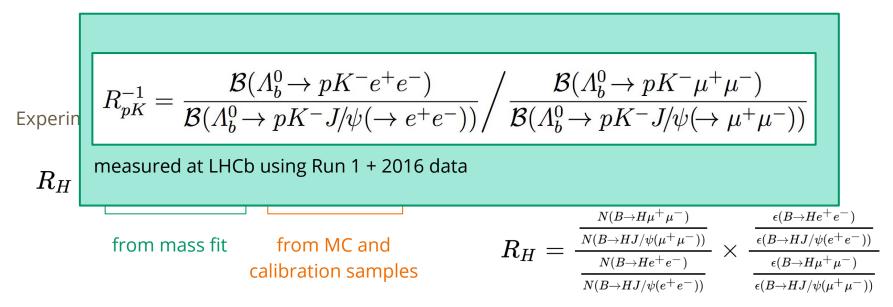
$$R_H = \left[rac{N(B
ightarrow H \mu^+ \mu^-)}{N(B
ightarrow H e^+ e^-)} imes \left[rac{\epsilon(B
ightarrow H e^+ e^-)}{\epsilon(B
ightarrow H \mu^+ \mu^-)}
ight]$$

from mass fit

from MC and calibration samples

Exploit the well tested LFU in J/ ψ modes

$$r_{J/\psi}=rac{BR(B
ightarrow HJ/\psi(\mu^+\mu^-))}{BR(B
ightarrow HJ/\psi(e^+e^-))}=1$$


- as stringent cross-check
- to build double ratio → cancel systematic effects

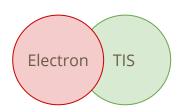
$$R_H = rac{N(B
ightarrow H \mu^+ \mu^-)}{N(B
ightarrow H J / \psi(\mu^+ \mu^-))}}{N(B
ightarrow H e^+ e^-)} imes rac{\epsilon (B
ightarrow H e^+ e^-)}{\epsilon (B
ightarrow H \mu^+ \mu^-)}}{N(B
ightarrow H J / \psi(e^+ e^-))} imes rac{\epsilon (B
ightarrow H e^+ e^-)}{\epsilon (B
ightarrow H J / \psi(\mu^+ \mu^-))}$$

LFU tests: R_{pK}

In the SM:

Exploit the well tested LFU in J/ ψ modes

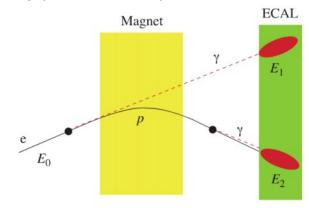
Electrons at LHCb


Hardware trigger

Larger ECAL occupancy → tighter thresholds for electrons:

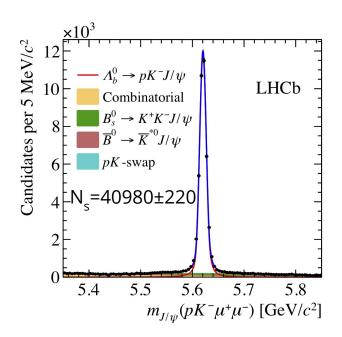
- e p_τ > 2700/2400 MeV in 2012/2016
- $\mu p_{\tau} > 1700/1800 \text{ MeV in } 2012/2016$

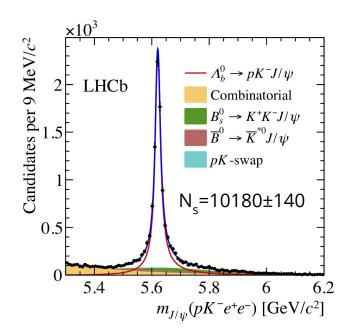
[LHCb-PUB-2014-046, 2019 | INST 14 P04013]


Include events triggered independently of the signal (TIS)

Interaction with detector material

Electrons radiate much more Bremsstrahlung

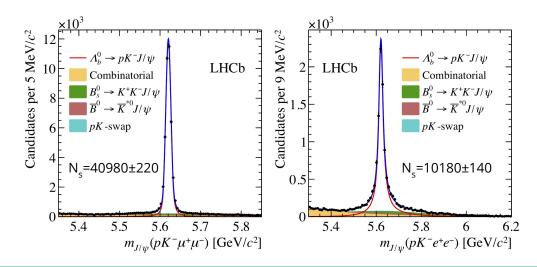

Recovery procedure in place



- miss some photons and add fake ones
- ECAL resolution worse than tracking
- → worse mass resolution for electron modes

R_{pK} : $r_{J/\psi}$ cross-check

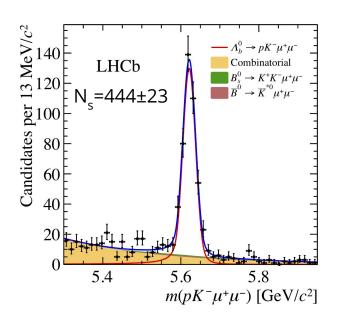
Constrain m(ee/ $\mu\mu$) to known J/ ψ mass \rightarrow better mass resolution

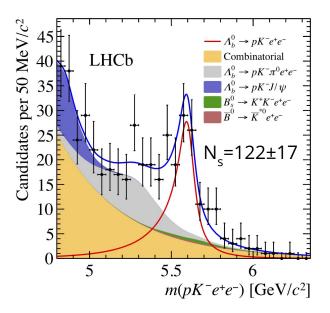


R_{pK} : $r_{J/\psi}$ cross-check

Efficiency cross-check: single ratio $r_{\parallel/\psi}$ known to be LU

$$r_{J/\psi}^{-1} = \frac{N(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))}{N(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))} \times \frac{\epsilon(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}{\epsilon(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))}$$




$$r^{-1}_{J/\psi} = 0.96 \pm 0.05$$

including stat. and syst.

Rare modes

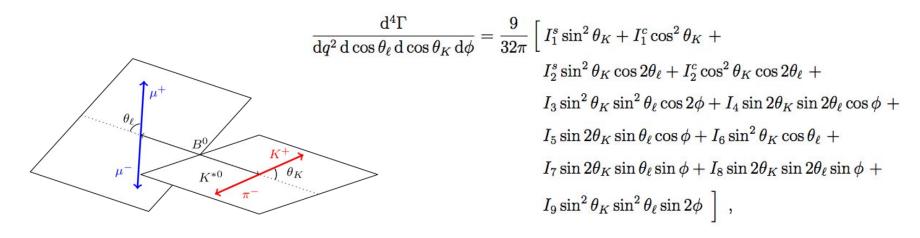
Mass constraint not possible → larger mass ranges, degradation for electrons

R_{pK} results

Putting all together

$$R_{pK} = \frac{\frac{N(\Lambda_b \rightarrow pK^-\mu^+\mu^-)}{N(\Lambda_b \rightarrow pK^-J/\psi(\mu^+\mu^-))}}{\frac{N(\Lambda_b \rightarrow pK^-e^+e^-)}{N(\Lambda_b \rightarrow pK^-J/\psi(e^+e^-))}} \times \frac{\frac{\epsilon(\Lambda_b \rightarrow pK^-e^+e^-)}{\epsilon(\Lambda_b \rightarrow pK^-J/\psi(e^+e^-))}}{\frac{\epsilon(\Lambda_b \rightarrow pK^-\mu^+\mu^-)}{\epsilon(\Lambda_b \rightarrow pK^-J/\psi(\mu^+\mu^-))}}$$

$$R_{pK}|_{0.1 < q^2 < 6 \,\text{GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05$$


compatible with SM within 1σ but same trend as R_{κ} and $R_{\kappa*}$

$$\mathcal{B}(\Lambda_b^0 \to pK^-\mu^+\mu^-)|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} = (2.65 \pm 0.14 \pm 0.12 \pm 0.29^{+0.38}_{-0.23}) \times 10^{-7}$$

$$\mathcal{B}(\Lambda_b^0 \to pK^-e^+e^-)|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} = (3.1 \pm 0.4 \pm 0.2 \pm 0.3^{+0.4}_{-0.3}) \times 10^{-7}$$

Angular analysis of B → K*ll

Full decay width of 4-body decay described by 3 angles + dilepton mass (q²)

Rich angular distribution: 11 angular terms (I_i) -- combination of helicity amplitudes, related to Wilson coefficients

Angular observables

CP-averages and asymmetries:

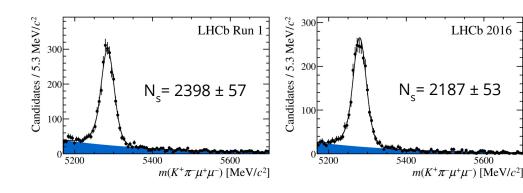
$$S_i = \left(I_i + ar{I}_i
ight) \left/ \left(rac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + rac{\mathrm{d}ar{\Gamma}}{\mathrm{d}q^2}
ight)
ight|$$

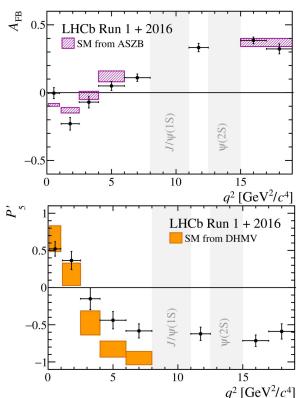
$$A_i = \left(I_i - ar{I}_i
ight) \left/ \left(rac{\mathrm{d}\Gamma}{\mathrm{d}q^2} + rac{\mathrm{d}ar{\Gamma}}{\mathrm{d}q^2}
ight)$$

- "Physical" observables:
 - \circ $F_1 = S_{1c}$: fraction of longitudinally polarised K^*
 - \circ A_{FB} = ${}^{3}\!4$ S_{6s}: forward-backward asymmetry of the dimuon system
- Optimised observables: form-factor uncertainties cancel at first order

$$P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_{\rm L}(1 - F_{\rm L})}}$$

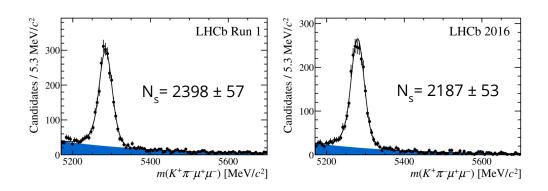
Angular fit to data

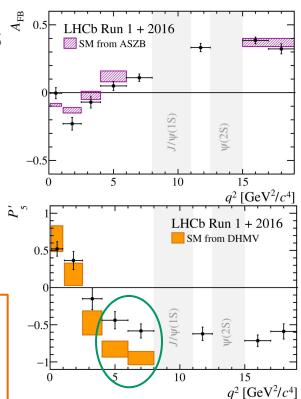

- acceptance: impact of detector geometry, trigger, reconstruction and selection on angular distribution \rightarrow shape from calibrated simulation
- 4D fit of mass and 3 angles: signal is separated from background through invariant mass


$$PDF = \overbrace{\epsilon(cos heta_K, cos heta_l, \phi, q^2)} imes \overbrace{d\Gamma(cos heta_K, cos heta_l, \phi, m; I_i)}$$

- fit performed in each q² bin
- fit also m($K^+\pi^-$) to separate P-wave $K^*(892)$ from S-wave non-resonant component

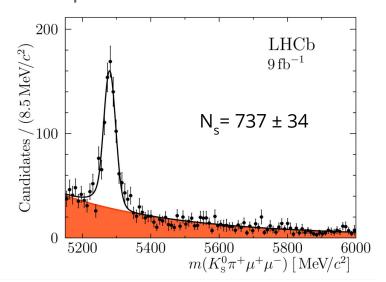
Angular analysis of $B^0 \rightarrow K^* \mu^* \mu^-$


Measure CP-averaged and optimised observables with Run 1 + 2016 data



Angular analysis of $B^0 \rightarrow K^* \mu^* \mu^*$

Measure CP-averaged and optimised observables with Run 1 + 2016 data

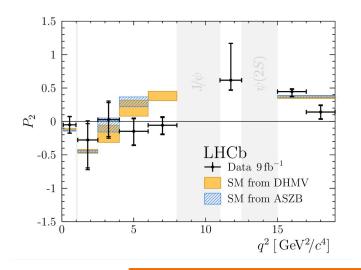


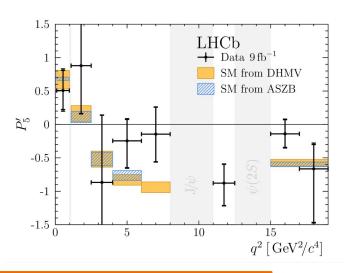
Local discrepancy of 2.5 and 2.9 σ in P'₅ Global tension of 3.3 σ with the SM using Flavio best fit at $\Delta \text{Re}(C_9) = -0.99$

Angular analysis of $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

Use full LHCb dataset (9 fb⁻¹) and $K^{*+} \rightarrow K_s \pi^+$ decay to measure CP-averaged and optimised observables

Cannot determine all observables simultaneously → apply folding to simplify angular expression

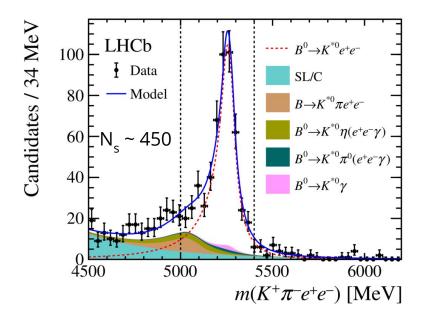

Five folds used to extract all observables, eg:


$$\Phi \rightarrow \Phi + \pi$$
 for $\Phi < 0$
sin Φ , cos Φ terms cancel out

$$P_5', S_5: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$

Angular analysis of $B^+ \rightarrow K^{*+}\mu^+\mu^-$

Local discrepancy of 3σ in P_2 (A_{FB}), same trend in P_2 and P_5 as for B^0 mode



Global tension of 3.1 σ with the SM using Flavio best fit at $\Delta \text{Re}(C_9) = -1.9$

Angular analysis of $B^0 \rightarrow K^*e^+e^-$ at low q^2

Use full LHCb data (9 fb⁻¹) in $q^2 \in [0.0008, 0.257]$ GeV²/c⁴ to test virtual photon contribution (C₇)

Fold Φ to simplify expression, keeping angular observables of interest. Historical variables used:

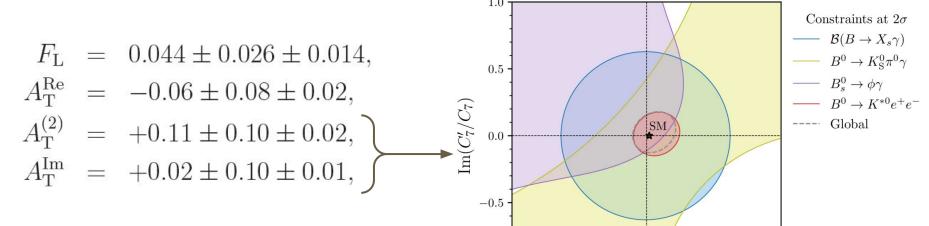
•
$$A_T^{(2)} = P_1$$

• $A_T^{Im} = -2P_2^{CP}$

$$A_{T}^{Im} = -2P_{3}^{CP}$$

$$A_{
m T}^{(2)}(q^2 o 0) = rac{2{\cal R}e({\cal C}_7{\cal C}_7^{'*})}{|{\cal C}_7|^2 + |{\cal C}_7^{'}|^2}$$

$$A_{
m T}^{
m Im}(q^2 o 0) = rac{2{\cal I}m({\cal C}_7{\cal C}_7^{'*})}{|{\cal C}_7|^2 + |{\cal C}_7^{'}|^2}$$


flavio v2.0.0

1.0

0.5

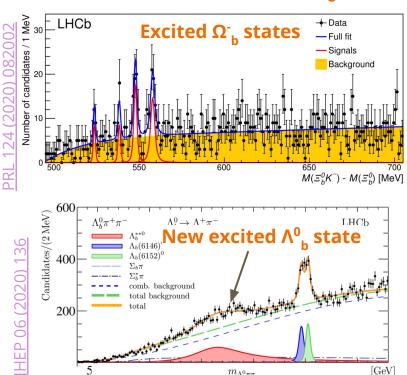
Angular analysis of $B^0 \rightarrow K^*e^+e^-$ at low q^2

Word-best constraints on C'₇ achieved:

-0.5

0.0

 $\operatorname{Re}(C_7'/C_7)$

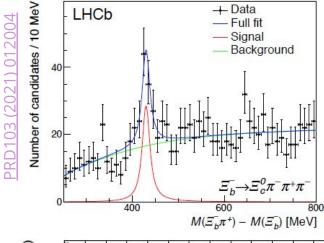

Very good agreement with SM

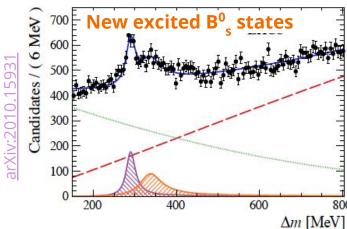
Recent LHCb results Spectroscopy

All in 2020

[GeV]

A b-hadron factory

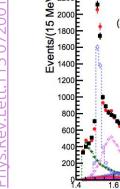


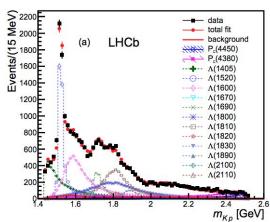

 $m_{\Lambda^0_{L}\pi\pi}$

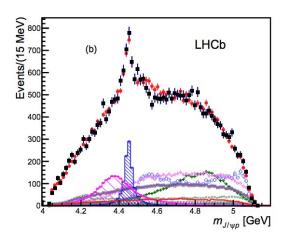
otal background

200

New excited Ξ^0 , state



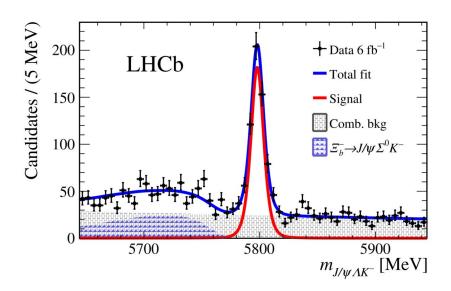


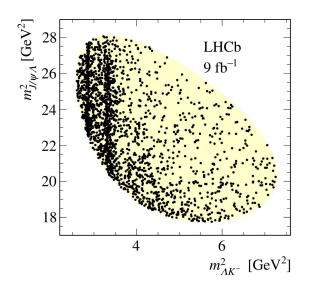

Exotic hadrons

Quark model allows states with >3 quarks, eg qqqq (tetra) or qqqqq (penta)

- $\chi_{c1}(3872)$ [Belle, 2003]: resonance-like structure in J/ $\psi \pi^{+} \pi^{-}$
 - soon confirmed by BaBar
- P_c [LHCb, 2015]: resonance-like structures in pJ/ ψ

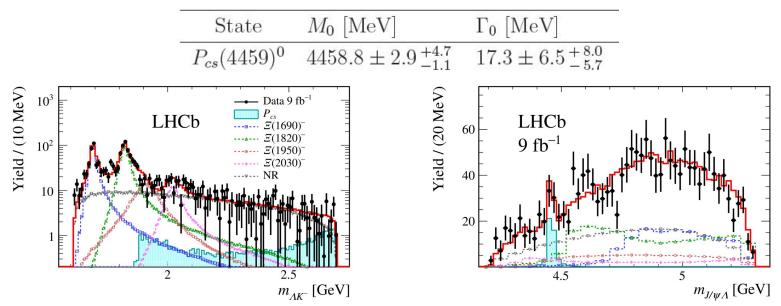
4 charm-quark states in di-J/ψ spectrum


Study di-J/ψ spectrum using full LHCb dataset (9 fb⁻¹)



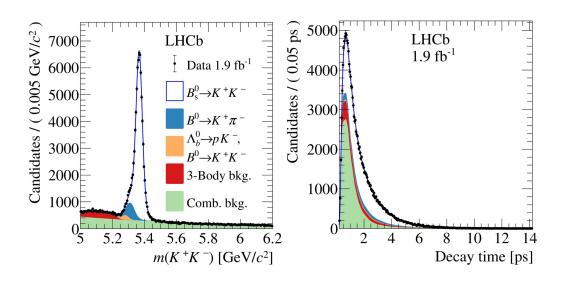
- Narrow structure ~6.9 GeV, X(6900), matching shape of a resonance
- Broader structure just above di-J/ψ threshold
- Deviation from nonresonant di-J/ψ production > 5σ in [6.2, 7.4] GeV
 - 4 charm-quark states predicted in this region

J/ ψ Λ structure in $\Xi_b^- \rightarrow J/\psi$ ΛΚ⁻


Using full LHCb dataset, study $\Xi_b^- \to J/\psi \Lambda K^-$ where P_{cs} states are predicted

J/ $\psi\Lambda$ structure in $\Xi_b^- \to J/\psi\Lambda K^-$

Full amplitude analysis: extra contribution to J/ $\psi\Lambda$ is preferred at 3.1 σ

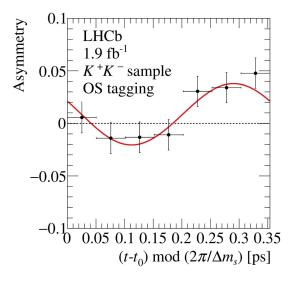


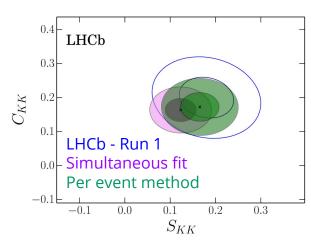
Also, improved determination of $\Xi(1690)^{-}$ and $\Xi(1820)^{-}$ mass and width

Recent LHCb results CPV

CPV in $B_{(s)} \rightarrow h^{\dagger}h^{-}$ decays

Study time-dependent CPV in $B_{(s)} \to \pi^+\pi^-$ (K⁺K⁻) and integrated CPV in $B_{(s)} \to K^{\pm}\pi^{\mp}$ using part of Run 2 data: simultaneous fit to control cross-feeds

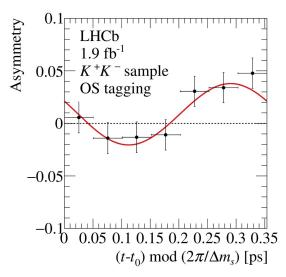

Final CP-eigenstates: interference between decay and mixing → CPV

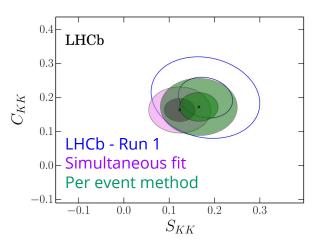

Critical ingredients:

- determination of B flavour
- good decay time resolution

TD-CPV in $B_s \rightarrow K^*K^-$ decays

$$A_{CP}(t) = \frac{\Gamma_{\overline{B}_{(s)}^0 \to f}(t) - \Gamma_{B_{(s)}^0 \to f}(t)}{\Gamma_{\overline{B}_{(s)}^0 \to f}(t) + \Gamma_{B_{(s)}^0 \to f}(t)} = \frac{-C_f \cos(\Delta m_{d,s}t) + S_f \sin(\Delta m_{d,s}t)}{\cosh\left(\frac{\Delta \Gamma_{d,s}}{2}t\right) + A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_{d,s}}{2}t\right)}$$





$$C_{KK} = 0.164 \pm 0.034 \pm 0.014,$$

 $S_{KK} = 0.123 \pm 0.034 \pm 0.015,$
 $\mathcal{A}_{KK}^{\Delta\Gamma} = -0.83 \pm 0.05 \pm 0.09,$

TD-CPV in $B_s \rightarrow K^+K^-$ decays

$$A_{CP}(t) = \frac{\Gamma_{\overline{B}_{(s)}^0 \to f}(t) - \Gamma_{B_{(s)}^0 \to f}(t)}{\Gamma_{\overline{B}_{(s)}^0 \to f}(t) + \Gamma_{B_{(s)}^0 \to f}(t)} = \frac{-C_f \cos(\Delta m_{d,s}t) + S_f \sin(\Delta m_{d,s}t)}{\cosh\left(\frac{\Delta \Gamma_{d,s}}{2}t\right) + A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_{d,s}}{2}t\right)}$$

$$C_{KK} = 0.164 \pm 0.034 \pm 0.014,$$

 $S_{KK} = 0.123 \pm 0.034 \pm 0.015,$
 $\mathcal{A}_{KK}^{\Delta\Gamma} = -0.83 \pm 0.05 \pm 0.09,$

Compatible with Run 1 results

CPV $>6\sigma$ from combination:

$$C_{KK} = 0.172 \pm 0.031,$$

 $S_{KK} = 0.139 \pm 0.032,$
 $\mathcal{A}_{KK}^{\Delta\Gamma} = -0.897 \pm 0.087$

The $K\pi$ puzzle in $B \rightarrow K\pi$ decays

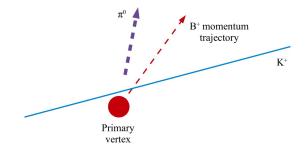
Direct CPV measured in whole family of B \rightarrow K π decays, with amplitudes related by isospin symmetry in SM: B⁰ \rightarrow K⁺ π ⁻, B⁺ \rightarrow K⁺ π ⁰, B⁰ \rightarrow K⁰ π ⁰ and B⁺ \rightarrow K⁰ π ⁺

However:

$$egin{aligned} A_{CP}(B^0 o K^+\pi^-) &= -0.084\pm 0.004 \ A_{CP}(B^+ o K^+\pi^0) &= -0.044\pm 0.021 \end{aligned}
ight\}$$
 not equal at 5.5 σ

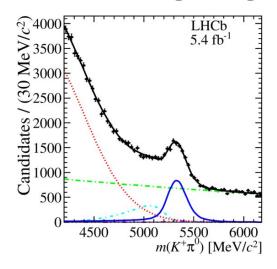
New results on $B^0 \to K^+\pi^-$ from previous analysis, next step: $B^+ \to K^+\pi^0$

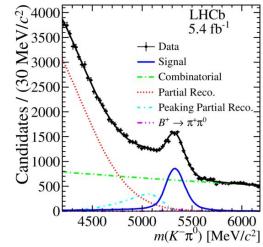
The $K\pi$ puzzle in $B \rightarrow K\pi$ decays


Direct CPV measured in whole family of B \rightarrow K π decays, with amplitudes related by isospin symmetry in SM: B⁰ \rightarrow K⁺ π ⁻, B⁺ \rightarrow K⁺ π ⁰, B⁰ \rightarrow K⁰ π ⁰ and B⁺ \rightarrow K⁰ π ⁺

However:

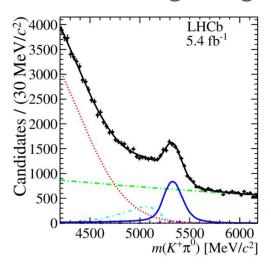
$$egin{aligned} A_{CP}(B^0 o K^+\pi^-) &= -0.084\pm 0.004 \ A_{CP}(B^+ o K^+\pi^0) &= -0.044\pm 0.021 \end{aligned}
ight\}$$
 not equal at 5.5 σ

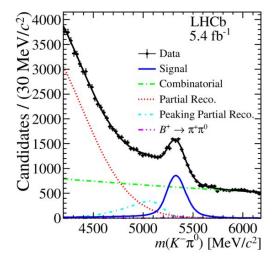

New results on $B^0 \to K^+\pi^-$ from previous analysis, next step: $B^+ \to K^+\pi^0$


Challenge: B⁺ decay vertex cannot be reconstructed in this decay

CPV in B⁺ \rightarrow K⁺ π^0

Use 2016 - 2018 LHCb sample (dedicated trigger needed) and highly optimised selection to fight large backgrounds

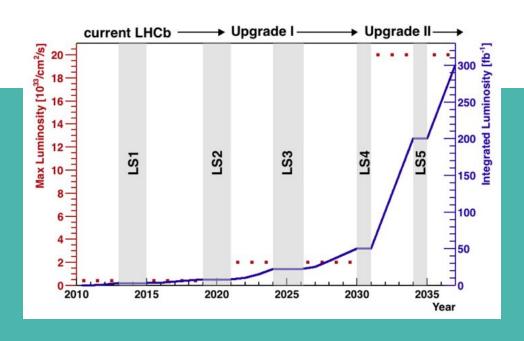


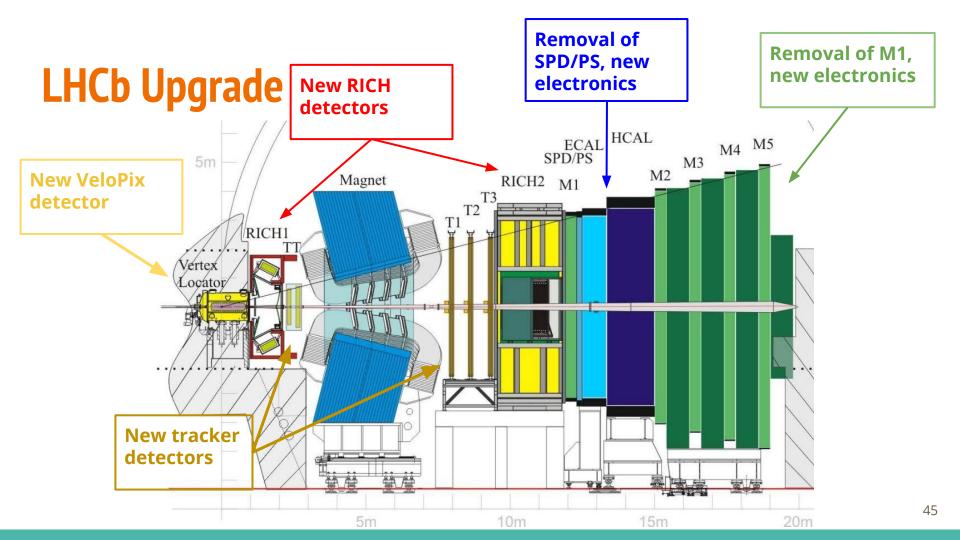

$$A_{CP}(B^+ \to K^+ \pi^0) = 0.025 \pm 0.015 \pm 0.006 \pm 0.003,$$

More precise than word average!

CPV in B⁺ \rightarrow K⁺ π^0

Use 2016 - 2018 LHCb sample (dedicated trigger needed) and highly optimised selection to fight large backgrounds

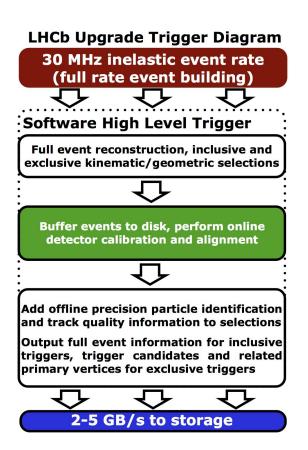

Using new word average:


 $\Delta CP(K\pi) \neq 0$ at >8 σ

$$A_{CP}(B^+ \to K^+ \pi^0) = 0.025 \pm 0.015 \pm 0.006 \pm 0.003,$$

More precise than word average!

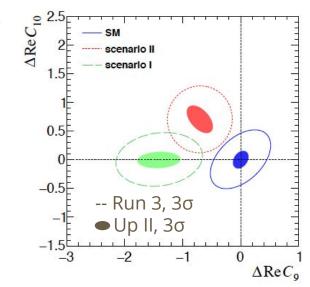
Future prospects

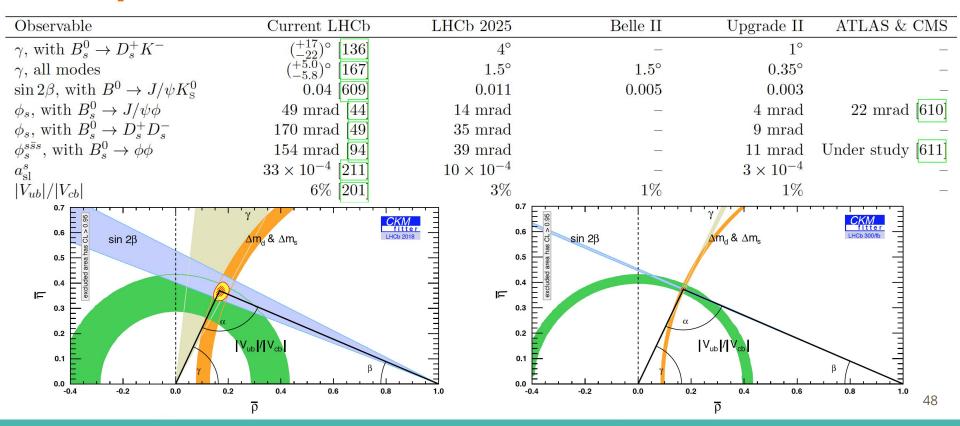

Trigger in Run 3 and beyond

Remove limitations of hardware trigger:

- remove tight p_{T} and E_{T} requirements
- x2 yields for fully hadronic decays

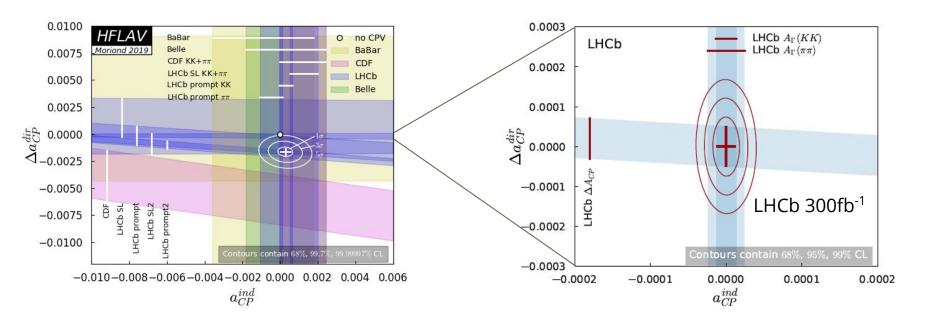
First level software trigger in GPUs:


- increase complexity of tracking algorithms
- better performance at higher throughput


Prospects for Rare Decays

- update measurements with full Run 1+2 dataset
 - o full Run 2 dataset: ~4 times number of b's in Run 1
- study LU and angular observables in new modes
 - \circ muon modes well established in several b \rightarrow sll decays

		Run 3	Run 4	Upgrade II
R_X precision	$9 {\rm fb}^{-1}$	$23 {\rm fb}^{-1}$	$50 {\rm fb}^{-1}$	$300{\rm fb}^{-1}$
R_K	0.043	0.025	0.017	0.007
$R_{K^{*0}}$	0.052	0.031	0.020	0.008
R_{ϕ}	0.130	0.076	0.050	0.020
R_{pK}	0.105	0.061	0.041	0.016
R_{π}	0.302	0.176	0.117	0.047



Prospects for CKM measurements

Prospects for Charm physics

Large benefit from fully software trigger

Conclusions

LHCb is not only a b-factory (huge production of $B^{0/+}$, B_s , Λ_b ...) but also a general purpose detector in the forward region

Wealth of new results this year and more to come soon:

- intriguing deviations from SM in RD might be hints for NP
- bunch of new conventional and exotic hadrons discovered
- probing CPV at unprecedented precision

LHCb is being (will be) upgraded to collect x30 larger dataset in Run 3-5

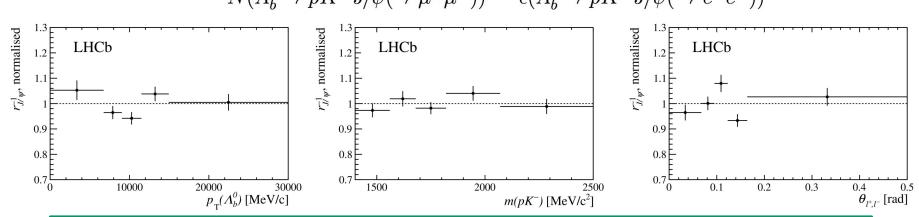
Conclusions

LHCb is not only a b-factory (huge production of $B^{0/+}$, B_s , Λ_b ...) but also a general purpose detector in the forward region

Wealth of new results this year and more to come soon:

- intriguing deviations from SM in RD might be hints for NP
- bunch of new conventional and exotic hadrons discovered
- probing CPV at unprecedented precision

LHCb is being (will be) upgraded to collect x30 larger dataset in Run 3-5

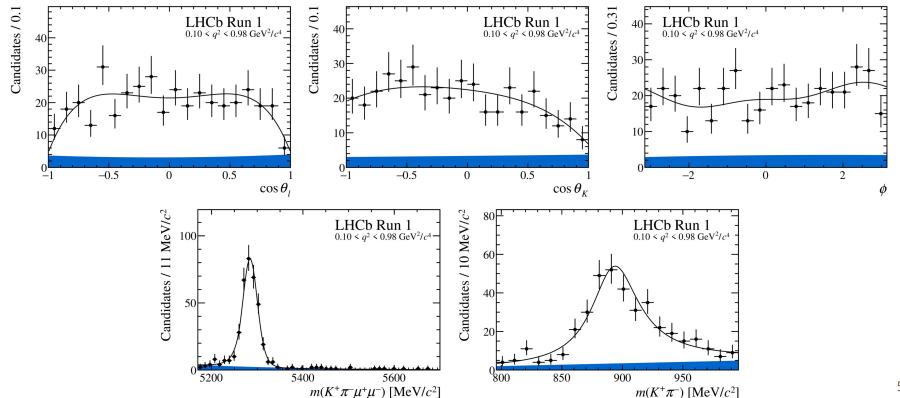

Stay tuned!

BACK-UP

R_{pK} : $r_{J/\psi}$ cross-check

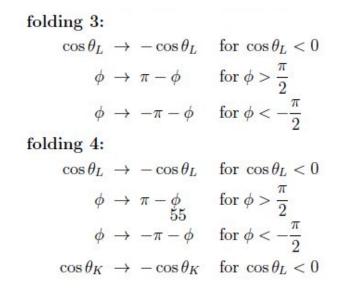
Efficiency depends on lab-frame variables \rightarrow check $r_{J/\psi}$ as a function of them

$$r_{J/\psi}^{-1} = \frac{N(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))}{N(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))} \times \frac{\epsilon(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}{\epsilon(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))}$$

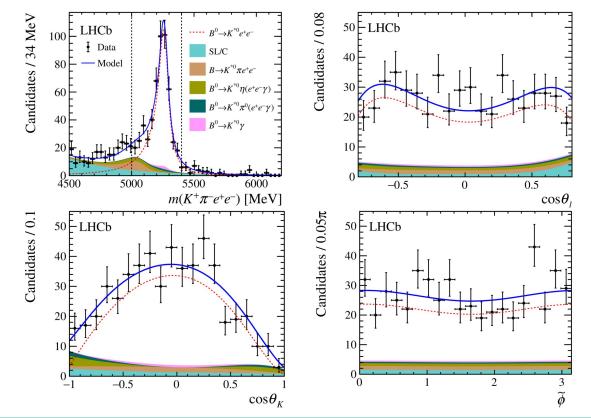

Flat on kinematic and topological variables

Systematic uncertainties

R⁻¹_{pK} measurement statistically dominated, main systematic uncertainties:

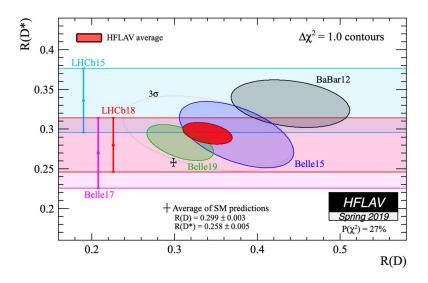

- <u>Fit model</u> (5.2%): partially reconstructed background shape in $\Lambda_b \to pK^-ee$ • nominal: $\Lambda_b \to pK^*-ee$, $K^{*-} \to K^-\pi^0$; alternative: nonresonant $\Lambda_b \to pK^-\pi^0ee$ decay
- Normalisation mode (~3.5%): uncertainties on yields and efficiencies
- <u>Decay model</u> (1.9%): alternative corrections from $\Lambda_b \rightarrow pK^-\mu\mu$ data
- Others: other corrections to simulation, m_{corr} cut efficiency, q² migration

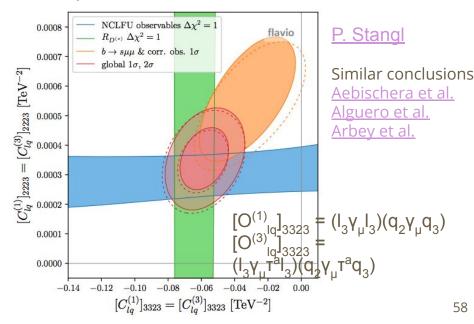
$B^0 \rightarrow K^* \mu^+ \mu^-$: fit projections lowest q² bin



$B^+ \rightarrow K^{*+} \mu^+ \mu^-$: angular folding

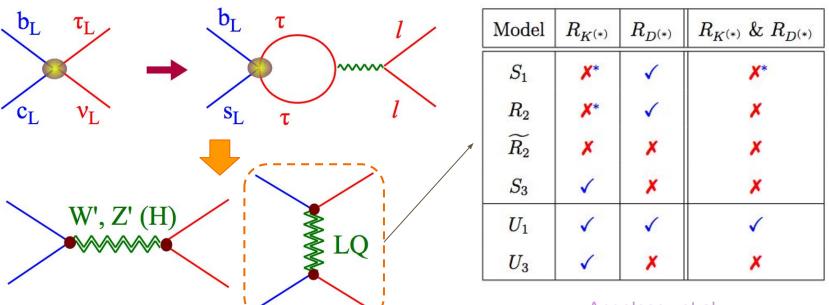
$$\begin{array}{ll} \text{folding 0:} \\ \phi \rightarrow \phi + \pi & \text{for } \phi < 0 \\ \text{folding 1:} \\ \phi \rightarrow -\phi & \text{for } \phi < 0 \\ \phi \rightarrow \pi - \phi & \text{for } \cos \theta_L < 0 \\ \cos \theta_L \rightarrow -\cos \theta_L & \text{for } \cos \theta_L < 0 \\ \text{folding 2:} \\ \phi \rightarrow -\phi & \text{for } \phi < 0 \\ \cos \theta_L \rightarrow -\cos \theta_L & \text{for } \cos \theta_L < 0 \end{array}$$



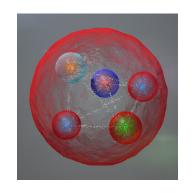

$B^0 \rightarrow K^*e^+e^-$ at low q^2 : fit projections

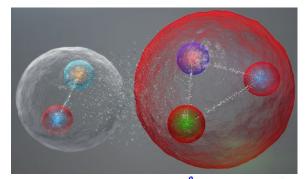
Compatibility with other b anomalies

Hints for NP also in b \rightarrow clv LU ratios R(D^(*)) by Belle, BaBar and LHCb at 3σ Common explanation to b \rightarrow sll anomalies is possible!

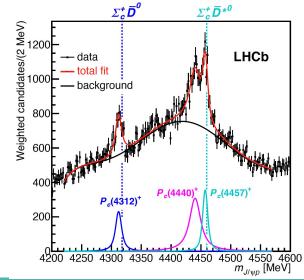


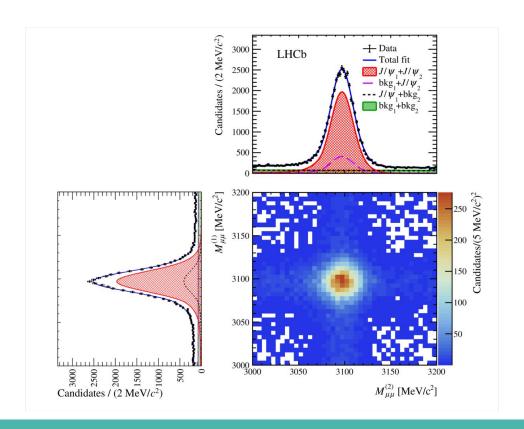
G. Isidori @Beyond the flavour anomalies


NP models in the market

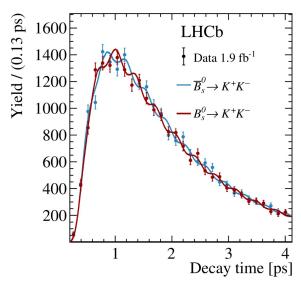

To explain $b \rightarrow sll$ and $b \rightarrow clv$ simultaneously:

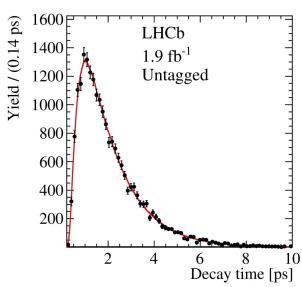
Angelescu et al.

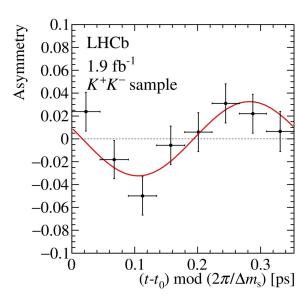

P_c nature

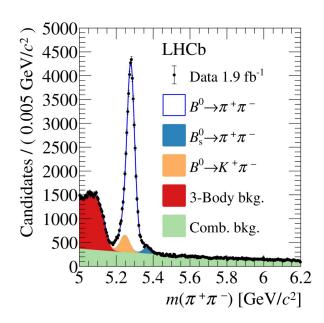


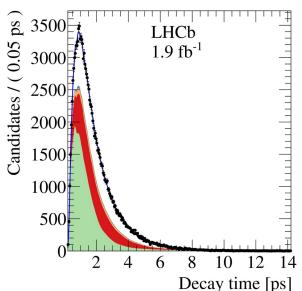
5 quark states:

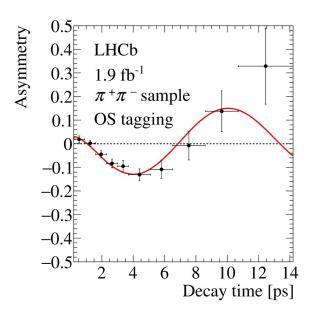

- tight combination?
- di-quark + tri-quark bound state?




di-J/ψ candidates


CPV in $B_s \rightarrow K^*K^-$: per-candidate method





CPV in $B \rightarrow \pi^{\dagger}\pi^{-}$ decays

