# Fast Identification of Continuous Gravitational Wave signals

#### Iuri La Rosa

Sapienza University of Rome

Laboratoire d'Annecy de Physique des Particules

Centre National de la Recherche Scientifique

Supervisors:

Paola Leaci (La Sapienza), Tania Regimbau (LAPP)

## The project

Gravitational waves all-sky searches for asymmetrically rotating neutron stars.

Constraining the parameters space with the fast stochastic background (SGWB) search pipeline, giving targets to the continuous waves (CW) directed narrowband search pipeline.

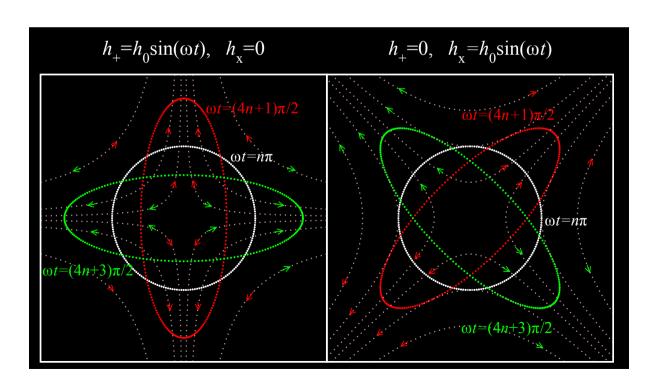
#### **Contents**

- Introduction on the gravitational waves
- The troubles of the all sky search
- The radiometer method
- The notable results of my studies

## **Gravitational waves**

Perturbation  $h_{\mu\nu}$  of the metric tensor. In small field and small perturbation approximations, we have in vacuum

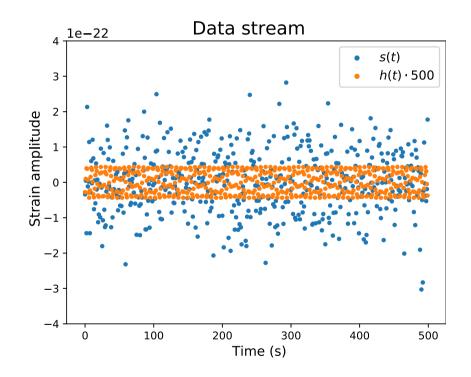
$$\left(
abla^2+rac{\omega^2}{c^2}
ight)h_{\mu
u}(\omega,x^i)=0$$



## The data

Time series 
$$s(t) = n(t) + h(t)$$





## The analysis

Matched filtering

$$S \propto \mathfrak{R} \left[ \int_0^\infty ilde{s}_1^*(f) rac{\gamma(f) H(f)}{P_1(f) P_2(f)} ilde{s}_2(f) 
ight]$$

Where the filter is determined by the detectors overlap factor (ORF)  $\gamma$ , their PSDs  $P_i$  and by the signal template function H, which depends on the source's parameters.

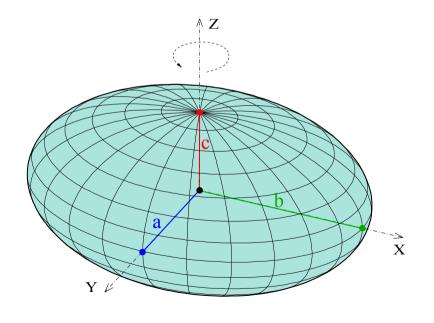
## **Continuous Waves**

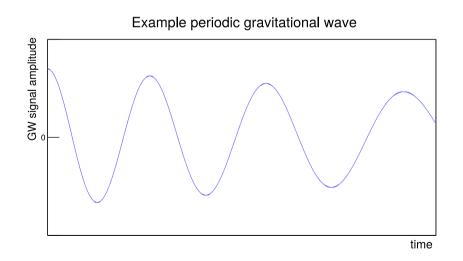
Generated by asymmetrically rotating neutron stars.

For isolated objects: signal amplitude  $h_0=rac{4GI\epsilon}{c^4r}\omega^2(t)$ .

Tipically 
$$\omega(t)=\omega_0+k\dot{\omega}$$
.

(parameters space dimensions count: 2  $(\omega_0, \dot{\omega})$ )





## A general case

We have to take into account:

 Binary systems: signal's shape is doppler shifted by the orbital motion of the object

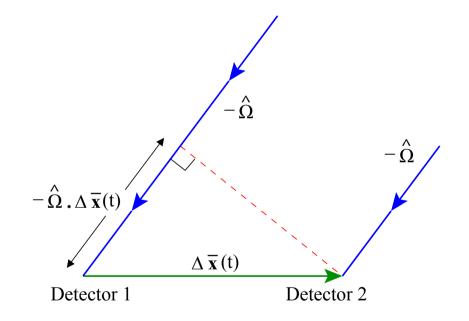
(parameters space dimensions count: 5 ( $\omega_0$ ,  $\dot{\omega}$ , i,  $r_o$ ,  $T_o$ )

 Earth motion: doppler effect which depends on the source coordinates

(parameters space dimensions count: +2  $(\alpha, \delta)$ )

## A more general search: SGWB radiometer method

The phase difference between the two detectors in the baseline is used to cross-correlate the data



<sup>\*</sup> Mitra, Sanjit, et al., Physical Review D 77.4 (2008): 042002.

## The sky map

$$egin{align} S_p &= rac{4}{t_s} \sum_{f,t} ilde{s}_{1,ft}^* rac{H_f \gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft} \ &= rac{4}{t_s} \sum_{f} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft} \ &= rac{4}{t_s} \sum_{f} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft} \ &= rac{4}{t_s} \sum_{f} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft} \ &= rac{4}{t_s} \sum_{f} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft} \ &= rac{4}{t_s} \sum_{f} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft} \ &= rac{4}{t_s} \sum_{f} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft} \ &= rac{4}{t_s} \sum_{t} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft} \ &= rac{4}{t_s} \sum_{t} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft} \ &= rac{4}{t_s} \sum_{t} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft}^* \ &= rac{4}{t_s} \sum_{t} H_f \sum_{t} ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft} P_{2,ft}} ilde{s}_{2,ft}^* \ &= rac{4}{t_s} \sum_{t} H_f \sum_{t} ilde{s}_{2,ft}^* ilde{s}_{2,ft}^* \ &= rac{4}{t_s} \sum_{t} H_f \sum_{t} H_f \sum_{t} H_f \sum_{t} ilde{s}_{2,ft}^* \ &= rac{4}{t_s} \sum_{t} H_f \sum_{t}$$

For any point p a semi-coherent search that cross-correlates segments of length  $t_s$ , and then integrates over them along the whole run

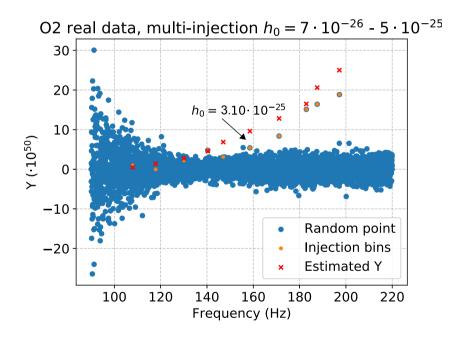
## **Tests**

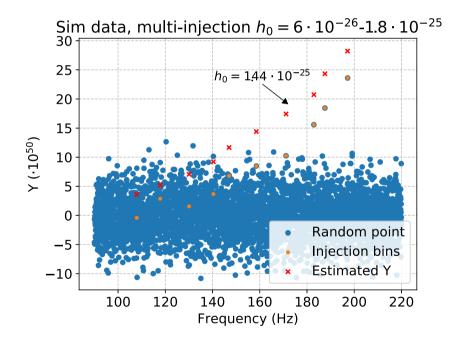
- Software injections on real data from the LIGO Hanford and Livingston detectors (11/30/2016 - 08/25/2017 O2 run)
- Tests on simulated noise with flat design noise levels (  $\sqrt{S_h} = 4 imes 10^{-24} Hz^{-1/2}$  )

In both cases ~3 months of contiguous data, data sampled at 256 Hz, analyzed between 100 and 200 Hz,  $\delta f = 1/32~Hz, t_s = 192~s$ 

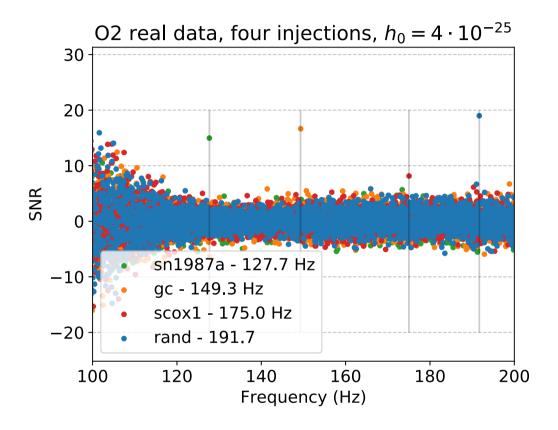
#### **Detection statistics**

$$Y_p = \sum_t ilde{s}_{1,ft}^* rac{\gamma_{p,ft}^*}{P_{1,ft}P_{2,ft}} ilde{s}_{2,ft}$$



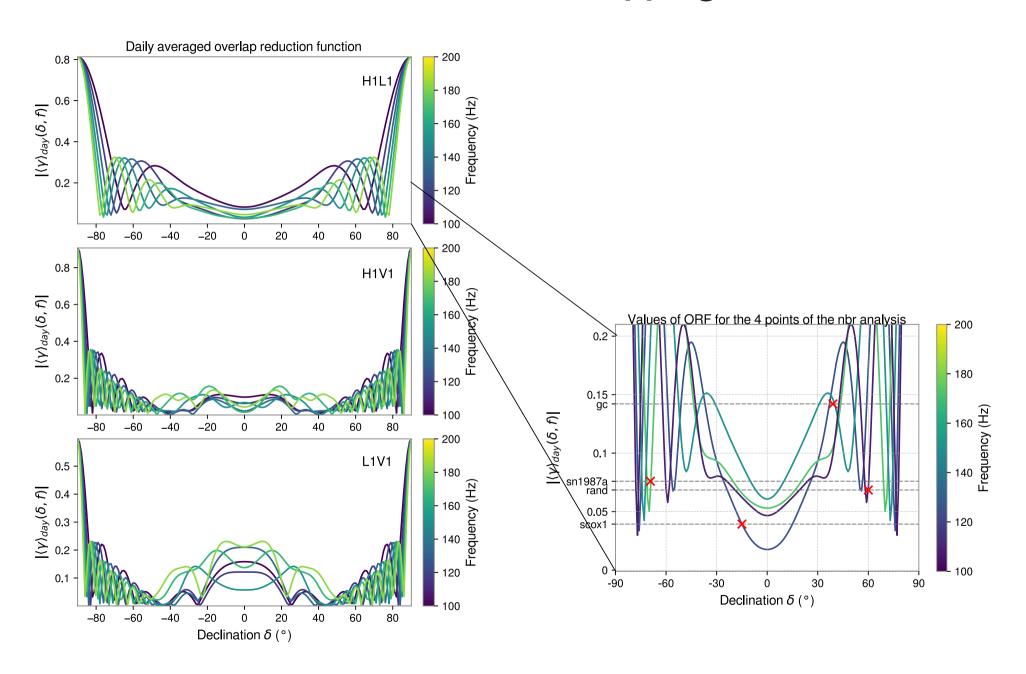


#### The stochastic narrowband search case



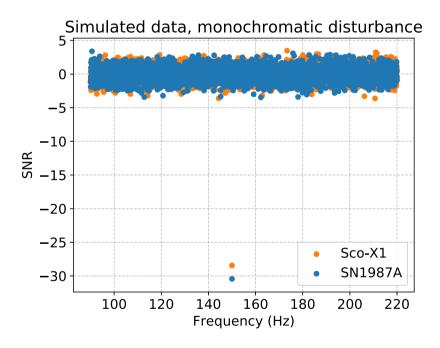
The signal are loud and they are retrieved correctly, probably SCOX1 is lower because the overlap reduction function

#### Non trivial behavior of overlapping detectors



Thanks to the higher control with simulated noise data, several other tests have been done, for example:

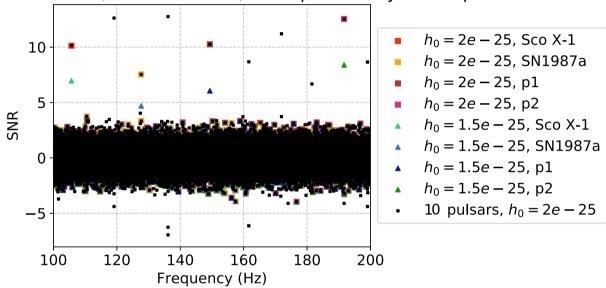
#### Monochromatic disturbance



A correlated disturbance is shown as "negative SNR"

#### Reproducibility with different number of signals

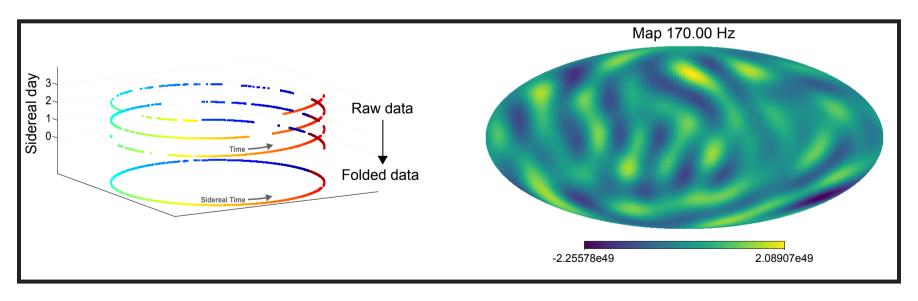




- ullet Colored: 4 pulsars tests at  $h_0=1.5$ - $2 imes10^{-25}$
- ullet Black: 10 pulsars test at  $h_0=2 imes 10^{-25}$
- SNR doesn't depend on the number of signals

#### **New tools**

- Use of the folded data
- A new version of the pipeline that builds the full narrowband map at once for each frequency bin

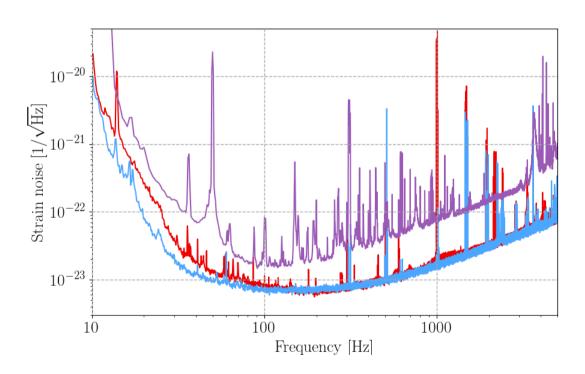


## Conclusions

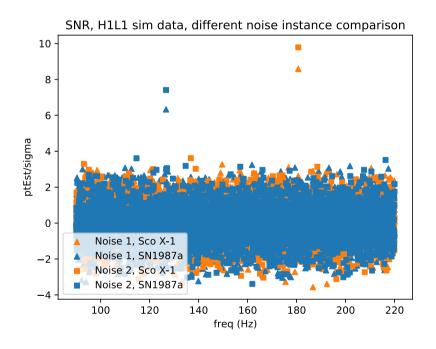
- Further tests to be done (e.g. role of the ORF)
- The pipeline is almost fully characterized for the next step
- Study how to apply the pipeline to a CW real case search

## Thank you!

## Sensitivity curves



#### Different noise instances



#### Different baselines

