Journées des métiers de l'électronique

A mass production test bench at few picoseconds timing resolution for the RAFAEL ASIC

Fabrice Guilloux, Irakli Mandjavidze, Sassia Hedia

On behalf of the CMS CEA group

IRFU | CEA Saclay

Outline

- Reminder, Timing distribution in LHC experiments
- Radiation tolerant fan-out ASIC for CMS experiment
- RAFAEL Specifications
- Characterization results
- RAFAEL test bench
- Production tests
- Outlook

Reminder, Timing distribution in LHC experiments

Context

Large Hadron Collider (LHC): Common R&D project for Compact Muon Solenoid (CMS) phase 2 upgrades are currently underway for high precision clock distribution

Target

Reach 30-50 ps time resolution with 10-15 ps jitter at the level of frontend

Strategy

Two options for timing detector:

- LHC clock to each module encoded in control links (baseline)
- Dedicated clock (security solution)

Need

Having a baseline solution with a fan-out ASIC :

- → For clock & data distribution
- → Facilitate front-end design

Radiation tolerant fan-out ASIC for CMS experiment

RAFAEL

- Radiation-hard Fan-out ASIC for Experiments at LHC
- Distribution of clock & fast command differential signals
- Frontend electronics of the precision timing detectors of CMS:
 - High granularity calorimeter (HgCal)
 - MIP timing detector (MTD) → Barrel timing layer (BTL)
- CEA Saclay has started designing RAFAEL since September 2019 :
 - ✓ ASIC original design from IRFU with IO IP block design from OMEGA
 - ✓ Test bench design and characterization at IRFU

RAFAEL Specifications

Main features

- Package => 7 mm x 7 mm 48-pin QFN
- Technology => 130 nm Node
- Configurations => single buffer or dual buffer
- Fan-out factors => 1:13 or (1:6 and 1:7)
- Frequency range => DC to 400 MHz
- Output skew => channel-channel : 50 ps & part-part : 300 ps
- Pre-emphasis settings per group of outputs => 1 mA, 2 mA.
- Power supply voltage => 1.2 V
- Radiation hardness => tolerant to 200 Mrad cumulative dose
- Temperature range => -30°C to +40°C guaranteed

RAFAEL Specifications

Possible configurations

A buffer with 3 differential inputs and 13 differential outputs:

- Single fan-out distributing one of the 3 inputs to up to 13 outputs.
- Two independent buffers with fan-out factors of up to 6/7 resp.

- Control of the Pre-Emphasis current and the duration of the current boost (pins EnPE and EnS) :
 - → Increase current during **rising/falling edges** to adjust bandwidth.
- Groups of outputs (A,B,C) can be activated / deactivated (depending on ENABLE_{x} input signal) :
 - → Select the desired strength of the output drivers.

Characterization results examples

BTL frontend use case

	Main functions	Under experimental conditions
-	3 Inputs : 12 outputs + 1 return path	- Input signal : clock / data
-	Signal strength: 2mA / 1mA	- Frequency : 40 Mhz
-	Pre-emphasis: +2mA / +1mA /OFF	- Temperature : 30°C
-	Pre-emphasis duration : variable	- Irradiation :10 Mrad

- → Single buffer input mux / fan-out buffer (up to 13 outputs)
- → Redundant control via lpGBTs and on board GBT-SCAs
- → Negligible effect on jitter

A nice summary of tests results by Fabrice Guilloux:

2021-01-19 TID Power Rafael-V0.pdf (cern.ch)

Updated by Irakli Mandjavidze:

210601_Hptd_RafaelUpdate.pdf

RAFAEL ASIC

Characterization results examples

HgCal use case

- > BTL frontend test stand has been adapted for testing in HgCal mode
- New version RAFAEL-V1:
 Separation of power supplies of input stage and between outputs to avoid some couplings
- ➤ RAFAEL is operating in **double buffer** mode (1-to-7 and 1-to-6 fun-outs)
- Baseline since January 2021

RAFAEL test bench

Test bench

Item	Specification
HPTC	40.079 MHz/ 160.316 MHz/ 320.632 MHz
Power supply	TTI MX100P 315W
Oscilloscope	Teledyne Lecroy SDA 820Zi-B (Up to 80 Gs/s) Precision timing measurement
SAMPIC	32 Channels Automated batch of various tests Acquired data analysis

Test board

RAFAEL test bench

SAMPIC

- > SAMpler for PICosecond time : picosecond time measuring system
- > Divert SAMPIC module and DAQ system for the proper developpement of RAFAEL test bench
- \triangleright Channel time resolution 3 5 ps rms
- ➤ Use of almost all provided channels (30/32 channels)
- > Reconstruction of differential signals from single-ended
- > Synchronous measurement using HPTC clock as a reference
- > Define acquisition system according to the configuration file

RAFAEL Production

In-house		
Manual	Automated	
- Fine characterization	- Systematic validation	
(BTL use case)	- Group of Asics $\sim 1 k$	
- Limited Asics (~10 units)		

- → Anticipating the final production
- → Monitor and record data (DAQ)
- → Rapid test (~1 min/Asic)

Out-nouse		
Manual	Automated	
- Simple & easy to use	- Interfaced with tester robot	
- 10 - 100 <i>k</i> units	- Mass prod $\sim 100~k$	

Rafael Manual testing

Graphical user interface (GUI)

Complete data acquisition and analysis system for RAFAEL

In-house tests

Overview

Total production about 45 000			
Use case	Number		
BTL: single-buffer mux / fan-out	~ 2 500 ASICs		
HgCal: double-buffer fan-out	~ 32 000 ASICs		

Automated process with ensuring good interaction
between different measurement systems
(Power supply/ Temperature sensor / SAMPIC)

In-house automated tests

Top view of the automated testing process

In-house automated tests

Mass production testing flowchart

Scripts en Python

Outlook

- RAFAEL: baseline for clock & fast command distribution in BTL and HgCal
- RAFAEL clock distribution tests verified => desired specification achieved
- Anticipate final production → ~45 000 ASIC planned for 2022
- Production validation In-house tests :
 - RAFAEL test bench DAQ working fine & some mechanical displacement problems
 - **Manual** and **automated** production testing modes are ready
 - For **statistics** purposes and choosing final acceptance criteria
- Out-house production :

User-friendly interfaces → simple & rapid

THANK YOU FOR YOUR ATTENTION

Backup

BTL clock distribution tests using CCv2 board

Performance testing of the embedded clock distribution

