

Journées des Métiers de l'Electronique de l'IN2P3 et de l'IRFU 2021

SYSTEMES DE MESURE DE TEMPS À LA PICOSECONDE A BASE DU CIRCUIT SAMPIC

D. Breton², C.Cheikali², E. Delagnes¹, H. Grabas³, O. Lemaire⁴, J. Maalmi², P. Rusquart², P. Vallerand²

- ¹ CEA/IRFU Saclay (France)
- ² CNRS/IN2P3/IJCLab Orsay (France)
- ³ Anciennement CEA/IRFU Saclay (France)
- ⁴ Anciennement CNRS/IN2P3/LAL Orsay (France)

INTRODUCTION PHILOSOPHIQUE

- Je voudrais mesurer le temps de façon très precise
- J'ai un nombre assez important de voies ...
- J'ai un taux d'acquisition par voie qui est raisonnable ...
- Je ne veux pas dépenser beaucoup d'argent ...
- ...et je souhaiterais vraiment voir la forme de mes signaux ..

Un compromis serait un TDC qui fournit juste la partie intéressante de la forme d'onde du signal ...

CONCEPT DU "WAVEFORM TDC"

WTDC: a TDC which also permits taking a picture of the real signal. This is done via sampling and digitizing only the interesting part of the signal.

Based on the digitized samples, making use of **interpolation** by a digital algorithm, fine time information will be extracted.

- Advantages:
- Time resolution ~ few ps rms
- No "time walk" effect
- Possibility to extract other signal features: charge, amplitude...
- Reduced dead-time...
- But:
- waveform conversion (**200 ns to 1.6 μs**) and readout times are fast but don't permit counting rates as high as with a classical TDC

STRUCTURE D'UN WAVEFORM TDC

- Mix of DLL-based TDC and of analog-memory based Waveform Digitizer
- The TDC gives the time of the samples and the samples give the final time precision after **interpolation** => **resolution** of a few ps rms
- Digitized waveform gives access to signal shape...
- Conversely to TDC, discriminator is used only for triggering, not for timing

ARCHITECTURE GLOBALE DE SAMPIC

CIRCUITS SAMPIC → V5, VSLOW

- Till Version V3D (V4) Technology: **AMS CMOS 180nm** (Surface: 8 mm2, Package: QFP 128 pins, pitch of 0.4mm)
- Most produced version is **V3D** (should have been called V4) submitted in **December 2017** but received only in **January 2019**
- 1300 chips have been packaged in 128-pin plastic TQFP package
- Due to the (temporary?) stop of the CMOS 0.18µm technology at AMS, we looked for equivalent ones.
- TSI Microelectronics is also proposing his own version of the former IBM CMOS 0.18µm technology, with some rule differences with AMS on the top metal layers.
- We migrated the design to TSI technology => **SAMPIC_V5**.
- We took benefit of this new submission for improving some historical weaknesses (sampling at 10.2 GS/s, first sample, linearity of posttrig delays, internal calibration of ADC, version register, ...)
- We also designed a second version dedicated to slower sampling, covering the range between 350MS/s and 2GS/s. → SAMPIC VSIow
 - Fully pin to pin compatible. Only difference is the **main clock frequency**.
 - Both versions submitted in **January 2021.** Back in **May** (very effective work of TSI), packaged **end of May** and **worked very well.**

SAMPIC V5 (TSI 0,18µm technology)

FONCTIONNALITÉS PRINCIPALES DE SAMPIC (> V3)

Triggering:

- Self-Trigger
- Central Trigger: (OR, multiplicity of 2 & 3) with possibility of common deadtime or selecting only channels participating in decision.
- Channel chained : (to previous one)
- "Ping-Pong" or Toggling Mode: channels work in pairs.
- PostTrig (8-step full window very useful for low frequencies)
- TOT-Filter: events are rejected based on the TOT value.

Measurements:

- TOT: based on the signal of the discriminator
- ADC conversion (selectable between 7 and 11 Bits)
 - Auto-Conversion: conversion automatically started when an event is detected, independently for each channel.
 - Handshake with FPGA: permits building 2^{nd and} 3rdLevel triggers based on many chips or boards for a common event selection

AUTO Calibration :

- Dedicated signal sources are implemented in the chip in order to perform time INL calibration in standalone and ADC calibration.
- ➤ Integrated DACS: all necessary DACs for controlling the chip are integrated (current ramp for ADC, Ring Osc, TOT etc...)

PERFORMANCES GLOBALES SAMPIC V3 – V5

- Power consumption: ~10mW/channel
- 3dB bandwidth > 1 GHz
- Sampling rate up to 8,5 (10.2) GS/s
- Discriminator noise ~ 2 mV rms
- Counting rate > 2 Mevts/s (full chip, full waveform), up to 10 Mevts/s with Region Of Interest (ROI)
 - Wilkinson ADC conversion @ ~1 (1,45) GHz
 - Dynamic range of 1V
 - Gain dispersion between cells ~ 1% rms
 - Non linearity < 1.4 % peak to peak
 - After correction of each cell (linear fit): noise = 0.7 (10GS/s) to 1.3 mV rms (1.6 GS/s)

Time Difference Resolution (TDR):

- Raw non-gaussian sampling time distribution due to DLL non-uniformities (TINL)
- Easily calibrated & corrected
- TDR goes from ~ < 5 (10GS/s) to ~18 ps rms (1.6 GS/s)

QUELQUES PROBLÉMATIQUES LIÉES AU DÉVELOPPEMENT DE SYSTÈMES

Integration

- Connectors for fast and numerous analog signals, crosstalk
- Number of components on board

Calibration

- Clock distribution and Synchronization: inside module/crate, and between systems.
- Triggering
 - Coincidences, Comb logic, External Trig > System Level
 - ➤ Self-triggering → Buffers become full → potential loss of hit correlation

Data Acquisition

- Software/ Libraries → plug and play for physicists!
- Data Saving to disk

SYSTÈMES SAMPIC: LES MODULES 16 À 64 VOIES

- 16-, 32-, 48- and 64-channel modules are based on motherboards (2 o 4 slots) and 16-ch daughter boards.
- Motherboard: synchronization, triggering, and acquisition.
- Daughter-board: Front-End Interface with SAMPIC
- Acquisition through Gbit Ethernet UDP (RJ45 or Optical), USB2 → USB3

16 or 32-channel module (1 or 2 mezzanines)

16-channel mezzanine

64-channel module with individual MCX inputs (up to 4 mezzanines)

64-channel module with 16channel input connectors (can be analog or differential digital)

LE CHASSIS SAMPIC 256 VOIES

- In order to build systems with more channels, a **64-channel board** has been developed.
- It makes use of SAMTEC QRF8 16-channel connectors (very low crosstalk) for analog inputs
- 256-channel mini-crates (standard and compact versions) have also been developed based on this new board.
 - A new control and DAQ software has been developed together with a C library
- Central Control Board permits smart 3rd level triggering and acquisition through Gbit Ethernet UDP (RJ45 or Optical), USB2 (→ USB3?)
- Time difference resolution at crate level remains of the order of 5ps rms.

64-channel integrated

16-channel coaxial to SAMTEC QRM8 interface board

ACQUISITION SOFTWARE

- An acquisition software has been developed up to 64 or 256 channels (also C libraries)
- => full characterization of the chip & modules
- Special display for WTDC mode
- Data saving on disk.
- Currently used by all SAMPIC users.
- A smart panel dedicated to time measurement is available. It permits selecting the parameters used for extraction of time
 - Optional spline interpolation on the peak area and on the threshold area
 - Fixed threshold option
 - CFD: ratio, nb of applied thresholds (1 to 3)

 Recorded hit rate depends on: the number of waveform samples, the corrections applied (ADC, Time INL), the mode for saving on disk (ASCII,

binary)...

Main panel

Time Measurement panel

PROTOCOLE MULTI-LAYER POUR LE CTRL/DAQ

Irène Joliot-Curie Laboratoire de Physique des 2 Infinis

CALIBRATIONS

Different Calibrations are needed for SAMPIC:

- ADC calibration:
 - Current Ramp: DAC inside the chip → automated calibration.
 - → defines **number of bits** of the conversion (7 to 11 Bits).
 - Transfer function: gain and offset of each Wilkinson ADC converter
 - Need to vary input signal
 - External DAC for the Baseline on the board
 - Internal DAC for internal Calibration injected on the input
- ➤ Trigger Threshold Offsets: DAC inside the chip → automated calib
- Time INL calibration:
 - Need external sinewave generator : best results but fastidious
 - Internal Oscillator for time INL calibration → automated calib
- TOT measurement calibration : needs pulse with variable width.

Special **INPUT Block**, with **Bypass switch** to inject DAC for **internal ADC calibration** or asynchronous Oscillator for **internal Time INL calibration**.

CALIBRATION DE L'INL EN TEMPS

Calibration Externe : - très bonne correction d'INL mais fastidieuse, non envisageable à grande échelle.

Calibration Interne: - moins bonne correction mais peut être automatisée par Soft.

TIME RESOLUTION

Delays for measurement made by a cable box: rise time degrades with delay

 $\Delta t = 30 \text{ns}$

With external timecalibration:

 $\Delta t = 0 \text{ ns}$

4.2 GS/s

10.2 GS/s

6.4 GS/s

8.5 GS/s

- TDR of ~5 ps rms for 4.2< Fs<8.5 (10,2) GS/s
- **TDR < 10 ps rms** for **3.2 GS/s**
- **TDR < 18 ps rms** for **1.6 GS/s**

Time difference [ns]

With self-calibration

- Limited jitter degradation $(\sim 20\%)$
- Permits full integration in compact detection systems

NEED FOR EVENT FILTERING...

- Whatever the application, it is mandatory to find ways to **reject the wrong events** as early as possible in the readout chain in order to **keep the dataflow at a reasonable level**.
- Like a standard TDC, the Waveform TDC is natively self-triggered on each of its channels.
 This may produce very large hit rates, which may cause a saturation of the output buffers, especially since the waveforms have to be extracted (partially or in totality) together with the time information.
- In order to reduce the dataflow, it is necessary to filter the good events before conversion.
 A central trigger located in the ASIC can then help defining trigger conditions and drastically reducing the hit rate.
- Moreover, providing the adequate signals out of the chip permits performing in the surrounding FPGAs a second and third level trigger (depending on systems) based on smarter detector conditions and increasing the counting noise rejection by a huge factor.
- Noise filters can also be based on the characteristics of the signals as produced by the
 different detectors. For instance, a real time filter based on the TOT * has been
 implemented in SAMPIC. When used with signals issued from crystals and SiPMs, it permits
 rejecting above 99% of the dark count noise from the SiPMs.

TRIGGER IN 256-CHANNEL SYSTEM

A powerful and fully configurable trigger scheme has been implemented in the 256-channel system

Panel for L1 TRIGGER (each FE board)

Panel for L2 TRIGGER (each FE board)

Panel for L3 TRIGGER (Controller board)

6-option menu

PICOTECH & T2K

PicoTech prostate scanner

ND280 Timing Detector:

- Tests @ CERN with 64-channel
 WaveCatcher
- 256-channel customized watercooled SAMPIC __ crate

MINI-LIQUIDO & RAFAEL

- Mini-LiquidO prototype at CENBG
- Readout by a 64-channel WaveCatcher crate.
- We take a picture of the full detector for each event and time resolution is a key element for the precision of offline reconstruction.
- Next step for LiquidO
 electronics is moving to
 SAMPIC ~ 2000 channels for
 prototype of L-PET scanner
 (ANR 2021)

- Test bench (will be robotized)
 for the production and
 characterization of the 100,000
 RAFAEL ASICs (Clock Buffer
 for CMS) at IRFU
- Readout @ 8,5 GS/s by 32channel SAMPIC module.
- Channel time resolution measured is < 3 ps rms!

sampling (\sim 350 MS/s to \sim 2 GS/s)

CONCLUSION

rène Joliot-Curie	CONCL	USION	
SAMPIC circuit		SAMPIC Systems	
sampling from 1.6 • Works like a TDC: >> 100 kHz/ch. • All the DACs and integrated • It just requires powinterface with an F	nput, fully digital output, to 10.2 GS/s raw counting rate can go calibration generators are wer, clock, and a simple PGA umption ~10 mW/channel	 SAMPIC Systems: 16 ch to 256 ch Timing resolution < 5ps at the system level. Powerful Software(s) and C library Possibility to synchronize multiple crates. Complex Systems: mechanics, components, test & validation etc more than 256ch Crate. 	m
	ighly integrated tiny module ge scale detectors (nuclear or TOF-PETs,).	 Future developments: Design of a Master Board for clock trigger distribution of multiple crate Implement Individual DAQ links in crates Implement 10 Gbit-Ethernet on the Controller Board ? 	es.
Successful migration from IBM 0.18µm)	to TSI 0.18µm (also sourced	SAMPIC	
A second version ha	as been designed for slower		

ANNEXES

TAKING DATA WITH DETECTORS

- SAMPIC modules are already used with different detectors on test benches or test beams.
- Tested with PMTs, MCP-PMTs, APDs, SiPMs, fast Silicon Detectors, Diamonds: performances are equivalent to those with high-end oscilloscopes
- Different R&Ds ongoing with the TOF-PET community (CERN, IRFU, IN2P3, PicoTech...)
- SAMPIC is used for many beam tests at CERN, DESY, FermiLab, ...
- TOTEM developed a CMS-compatible motherboard housing SAMPIC mezzanines. 192
 measurement channels have been used on the LHC.
- SAMPIC is the baseline readout option for many detectors of the SHIP and SND@LHC collaborations.
- Used for T2K near detector Upgrade: 256-channel Timing Detector.
- Used for characterization of ultra-fast detectors (Photek for MCP-PMTs (IEEE paper))
- Used for the characterization and production test bench of high performance ASICs (IRFU for CMS)
- Used at IJCLab for the readout of the new LiquidO detector R&D concept => Neutrino physics, PET scanner

TOT MEASUREMENT

- SAMPIC is meant for digitizing a short signal, or only a small part of a longer one (eg rising edge) to extract the timing → then the other edge is skipped
- Addition of a ramp-based Time to Amplitude Converter in each channel seen as a 65th memory cell during digitization → ~10bit TOT TDC
- A TOT-based filter is also integrated in the chip

Measurement ranges between 2 and 700 ns.

SAMPIC_SLOW

- A second version dedicated to slower sampling has been developed.
 - Wider time window should permit effective multi-sample offline reconstruction
 - Pin to pin compatible with standard version. Only difference is the main clock frequency.
 - DLL optimized for running between 350MS/s and 2GS/s
 - All delays servo-controlled to main clock have been adapted
 - Analog memory cell has been enlarged (as much as easily possible but not yet optimum)
- First preliminary tests are very encouraging.
 - TDR @ 1.6 GS/s < 10ps rms! (mainly limited by SNR, already very good without calibration)

TDR between 2 chips

Between 2 chips:

@ **Fs = 6.4 GS/s**
$$\Delta t = 0.63 \text{ ns}$$

=> TDR = 4.5 ps rms

TIME RESOLUTION (DIGITAL CFD) VS SIGNAL AMPLITUDE

→ decrease of channel instantaneous dead time

- The quantization noise affects the timing precision only for very small signals
- ⇒ as expected **no significative change** measured for 11, 10 and 9-bit modes
- ⇒ for digital signals, 8 bits or less is adequate => reduced dead time (< 200 ns)

No degradation on timing for pulses above 100mV for 8 bits

PAGE 27

SAMPIC INTERNAL TRIGGER SCHEME

SAMPIC INPUT BLOCK (FROM V3)

- Input block :
 - Input signal can feed the memory directly (Bypass Mode) or pass through a translator block
 - It permits among others:
 - Self calibration of the chip (amplitude & time)
 - Compatibility with digital unipolar & differential signaling
- When fixed amplitude at translator output → we only need to read a few samples (ROI) and fast conversion can be used (≤ 8 bits) => behaves like a TDC

TIME INL CALIBRATION AND CORRECTION

Method we introduced in 2009 and used since for our analog memories, assuming that a sinewave is nearly linear in its zero crossing region: much more precise than statistical distribution

• Search of zero-crossing segments of a free running asynchronous sine wave

=> length[position]

- Calculate the average amplitude for zero-crossing segment for each cell.
- Renormalize (divide by average amplitude for all the cells and multiply by the clock period/number of DLL steps)
 - => time duration for each step = "time DNL"
- Integrate this plot:
 - ⇒ Fixed Pattern Jitter = correction to apply to the time of each sample = "time INL"

Time INL correction:

- \bullet Simple addition on T_{sample}
- Also permits the calculation of real equidistant samples by interpolation or digital filtering.

TRICKS FOR UNDERSTANDING RESOLUTION

- This is how we measure the contributions to the resolution: we run at 6.4 GS/s, send two 500 mV pulses separated by 2.5 ns to two channels:
 - 1. of the same mezzanine
 - 2. of two different mezzanines

- ~ 1.5 ps rms from the DLL
- ~ 1.8 ps rms from the clock distribution on the motherboard
- ~ 2.4 ps rms from the clock distribution on the mezzanine

SYNCHRONISATION DE DEUX CRATES 256-CH

Master Crate

SAMPIC: PERFORMANCE SUMMARY

		Unit
Technology	AMS CMOS 0.18μm	
Number of channels	16	
Power consumption (max)	180 (1.8V supply)	mW
Discriminator noise	2	mV rms
SCA depth	64	Cells
Sampling speed	0.8 to 10.2	GSPS
Bandwidth	>1	GHz
Range (unipolar)	~ 1	V
ADC resolution	7 to 11 (trade-off time/resolution)	bits
SCA noise	~ 1	mV rms
Dynamic range	> 10	bits rms
Conversion time	0.1 (7 bits) to 1.6 (11 bits)	μs
Readout time / ch @ 2 Gbit/s (full waveform)	< 450	ns
Single Pulse Time precision before correction (4.2 to 10.2 GS/s)	< 15	ps rms
Single Pulse Time precision after time INL correction (4.2 to 10.2 GS/s)	< 3.5	ps rms PAG