
Neural-network Topology Bayesian
Optimization for FPGA implementation

Frédéric Magniette
Journées online inter-réseaux 2019

Laboratoire Leprince-Ringuet

2

Introduction

● Pileup → complicated Trigger algorithm
● Evaluating particle ID and energy
● Hard to implement in FPGA (loops, maths...)
● Complicated algorithms can be replaced by NN

– Trained on simulations

– Implemented on FPGA

DNN in FPGA

● Easy implementation : dedicated tools
● Conversion software from model to hardware
● Using dedicated functionnal block (DSP, dedicated

computation units)
● Key point : precision

How to optimize resources to get the best precision ?

4

Optimization : an easy
question… a hard answer

● First optimization problem in Euclid Elements
(300BC) : max surface parallelogram inscribed in
triangle

● Easy general formulation
● First general answer with differential calculus 2000

years later
– f’(x)=0 and f’’(x)>0

– Requires analyticity, derivability and solvability

5

A first heuristic

● First heuristic by Newton
– iterative method to find a zero of the

derivative

● Only local derivatives required
● But : Hessian matrix computationally very

expensive

→ need a first order solution

Crazy ! Coming to me from the sky !

6

Optimization as a Blind Walk

● « Following the slope » method
● Only local knowledge of the field required
● Known as gradient descent algorithm

class
● Proposed by Cauchy in 1847

7

Gradient Descent

First Idea : following the slope by calculating the gradient vector

α : step size

Precision vs performance

8

Gradient Descent & Convexity

● Depend on the starting point
 → require convexity (unique minima)

● Practical solution : multiple random starts

9

Neural Networks

● Learn an algorithm by labelled data
● Invented by Yann Lecun

● Optimization space wij & θi named globally θ

● Function to optimize : loss function L(θ)
● Searching for a good minimum in the loss function

Li & al, « Visualizing the loss landscape
of neural nets, 2018, 1712.09913

10

Why does it work ?

● perceptron spherical
spin-glass model

● theoritical results reuse
– #minloc α edim

– #Bad_minloc α e-dim

– Good local minimum :

– Funnel global shape

● Global minimum is overfitting
● Deep learning (dim is big)

gives better results

Lecun & al, The loss surface
of multi-layer networks,
2015, 1412.0233

11

Convergence speed and avoiding
local minimas

● Adaptive learning rate
– Big step in big steep → speed up convergence

– Smaller steps in the hole → increase precision

● Avoid bad local minimas
– cosine annealing → restarts jump to another local minima

Smith, Cyclical learning rates for training neural networks, 2015, 1506.01186

12

Optimizers for DNN
● Gradient descent implies huge

storage of derivatives
O(dimension*#inputs) for each
update

● SGD slices the problem input by
input : slower the convergence and
add variance but save space

● Big diversity of SGD derived
algorithm

● Adam : a method for stochastic
optimization, Kingma & Ba, 2017,
1412.6980
– Automatic adaptative learning rate per

parameter

– Best performance ever → rules the
world

13

Topology Influence

Topology influences
dramatically the loss
surface shape

Adding skips →
connections

Resnet (very deep convolutional NN) Resnet with skips connections

DenseNet,
a resnet with full
skips connections

14

Two reasons to optimize topologies

2. Find the bias-variance tradeoff

● Too simple model
→ fit error
increased

● Too complicated
model → statistical
error (variance)
increased

● Gives a hope for
global convexity

● Help us saving
resources

1. Getting best distribution of neurons /
convolutional kernel / pooling / skip
connections for fixed resource
consumption in FPGA

● No thumb-rule
● Often qualified as a dark-art

15

Topology Optimization

● Best topology (in terms of precision) under resource consumption
constraint : again an optimization problem

● Parameter space : parametric representation of network
– #layers #conv-layers #pool-layers

– #layer1-size #layer2-size …

– #conv1-size #conv2-size …

– #pool1-size #pool2-size …

● Loss function : best precision with parametric trained network
● All right, doing gradient descent again ?
● Additionnal constraints

– Each point is very expensive to calculate (full training)

– The loss function is not derivable (even numerically)

16

Black Box / Zero-Order Optimization

Non derivable f function

17

Grid and Random Search

Dimensionality

18

CMA-ES
● Covariance Matrix Adaptation

Evolution Strategy
● Stochastic, derivative-free
● Generational adaptation of a

population of points
● Elimination of worst point →

covariance matrix estimation
● Quasi-newton method

(approximation of Hessian)
● Very efficient if function is

cheap to compute O(dim2)

Hansen & Ostermeier,
Completely Derandomized
Self-Adaptation in Evolution
Strategies, 2001

19

Data-driven Sampling

Sample Data

Compute a Fit

Evaluate Best
Next Sampling

Best algorithm : Bayesian Optimization

20

Bayesian Inference

Prior
Data Likelihood

Normalization

Model Plausibility
→ posterior

Recurrence
if new data

Model inference
from data

21

Gaussian Process

● Infinite extension of multi-variate Gaussian
● Arbitrary dimension
● Defined by mean(x) and sigma(x)

22

Gaussian Process Regression

● Variance is a function of the distance
● Possible to add noise regression
● Good representation of the so-far collected data

Matérn stationary covariance kernel

Bertil Matérn, Spatial Variation, 1960

23

Where to search ? Promising points

Can we express this as a function ?

24

Acquisition functions

● Upper Confidence Bound (UCB)

● Esperance of Improvement (EI or EOI)

● Probability of Improvment (PI or POI)
● Entropy search (PES)
● Thomson sampling (TS)

● Easy to compute
● Rely only on Gaussian process

25

Bayesian optimization

 Jonas Mockus, Bayesian Approach to Global Optimization, 1989

26

Exploitation vs Exploration

Computational
performance
vs
Exhaustivity
(local extremum)

Question : How to optimize hyper-parameters of hyper-
parameter optimizer ?

27

Limitation: Curse of Dimensionality

● Necessary data amount grows exponentially with
dimension

● Concerns all « neighbouring » fit techniques
● BO is limited in dimension (around 20-30)
● Neural nets are not concerned because their loss

function has a special shape (self-regularization)

28

HGCal Trigger

● Serenity platform
– Generic platform developped by

Imperial College

– Data aggregation on optical links

– Interconnection between different
layers of boards → distributed
algorithm

– Implement clustering algorithm
with particle ID and energy
evaluation

– Limited amount of resources and
latency → need for good
approximation

29

HGCal Test Case

● Particle ID : pion vs electron shower
classification

● Samples simulated by CMSSoftware on
HGCal model

● Output : binary choice
● Neural networks

– Multi-layer perceptrons (max 15 layers)
– Limited global number of neurons

● Bayesian optimization on #neurons per layer
space

30

Integrated Neural Network Automatic Trainer and Evaluator

● Runtime encapsulate all
algorithmic complexity

→ ease of development
● Based on Keras & Tensorflow

Innate API
import innate

#connect to scheduler

ie=innate.init("llrinnate.in2p3.fr")

#launch a simple training (can be asynchronous)

res=innate.train_net(ie,task_name,nn_filename,data_filename,

results_folder,nb_epochs=1000)

#plot result

print("elapsed time :"))

print("%s"%(res["etime"]))

innate.plot_loss(res)

32

Grid search topology exploration

● Exploring in a 3 layers
topology between 1 and
2000 neurons

● Inputs : cluster energies
per layer

● Precision=1-efficiency
(pion seen as electrons)

● 294 points
● Best point : 750 1000 750

with precision 0.985977

33

Bayesian Optimization

● Bayes-opt implementation

● Only 100 points

– 20 random points

– 80 fit points

– Could be optimized (50)

● Best point : 1341 835 1117
with precision 0.985696

● Same precision with 1/3
points

34

Global Performance over
Resource Avaibility

● Taking different max size and searching for best
size

● Max 15 layers

Best network : 38x174x302x4x492x11x1

35

Perspectives

● Add PyTorch to Innate
– All exciting new technos are there !

● Try different flavour of neural network
– Graph convolution (non euclidian)

– Study portability on FPGA

● Implement Parallel Bayesian Optimization
● Participate to the « Think IN2P3 project »
● Implement an optimal DNN for level 1 trigger in

CMS HGCal
● Keep the trend in a VERY prolific domain !!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35

