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Introduction

● Pileup → complicated Trigger algorithm
● Evaluating particle ID and energy
● Hard to implement in FPGA (loops, maths...)
● Complicated algorithms can be replaced by NN

– Trained on simulations

– Implemented on FPGA



  

DNN in FPGA

● Easy implementation : dedicated tools
● Conversion software from model to hardware
● Using dedicated functionnal block (DSP, dedicated 

computation units)
● Key point : precision

How to optimize resources to get the best precision ?
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Optimization : an easy 
question… a hard answer

● First optimization problem in Euclid Elements 
(300BC) : max surface parallelogram inscribed in 
triangle

● Easy general formulation 
● First general answer with differential calculus 2000 

years later
– f’(x)=0 and f’’(x)>0

– Requires analyticity, derivability and solvability
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A first heuristic

● First heuristic by Newton
– iterative method to find a zero of the 

derivative

● Only local derivatives required
● But : Hessian matrix computationally very 

expensive 

→ need a first order  solution

Crazy ! Coming to me from the sky !
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Optimization as a Blind Walk

● « Following the slope » method
● Only local knowledge of the field required
● Known as gradient descent algorithm 

class
● Proposed by Cauchy in 1847
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Gradient Descent

First Idea : following the slope by calculating the gradient vector

α : step size

Precision        vs      performance
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Gradient Descent & Convexity

● Depend on the starting point
 → require convexity (unique minima)

● Practical solution : multiple random starts
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Neural Networks

● Learn an algorithm by labelled data
● Invented by Yann Lecun

● Optimization space wij & θi named globally θ

● Function to optimize : loss function L(θ)
● Searching for a good minimum in the loss function

Li & al, « Visualizing the loss landscape 
of neural nets, 2018, 1712.09913
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Why does it work ?

● perceptron      spherical 
spin-glass model

●  theoritical results reuse 
– #minloc α edim

– #Bad_minloc α e-dim

– Good local minimum : 

– Funnel global shape 

● Global minimum is overfitting
● Deep learning (dim is big) 

gives better results  

Lecun & al, The loss surface 
of multi-layer networks, 
2015, 1412.0233
 



11

Convergence speed and avoiding 
local minimas

● Adaptive learning rate
– Big step in big steep → speed up convergence

– Smaller steps in the hole → increase precision

● Avoid bad local minimas
– cosine annealing → restarts jump to another local minima

Smith, Cyclical learning rates for training neural networks, 2015, 1506.01186



12

Optimizers for DNN
● Gradient descent implies huge 

storage of derivatives 
O(dimension*#inputs) for each 
update

● SGD slices the problem input by 
input : slower the convergence and 
add variance but save space

● Big diversity of SGD derived 
algorithm

● Adam : a method for stochastic 
optimization, Kingma & Ba, 2017, 
1412.6980
– Automatic adaptative learning rate per 

parameter

– Best performance ever → rules the 
world
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Topology Influence

Topology influences 
dramatically the loss 
surface shape

Adding skips →
connections 

Resnet (very deep convolutional NN) Resnet with skips connections

DenseNet,
a resnet with full 
skips connections



14

Two reasons to optimize topologies

2. Find the bias-variance tradeoff

● Too simple model 
→ fit error 
increased

● Too complicated 
model → statistical 
error (variance) 
increased

● Gives a hope for 
global convexity

● Help us saving 
resources 

1. Getting best distribution of neurons / 
convolutional kernel / pooling / skip 
connections for fixed resource 
consumption in FPGA

● No thumb-rule
● Often qualified as a dark-art
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Topology Optimization

● Best topology (in terms of precision) under resource consumption 
constraint : again an optimization problem

● Parameter space : parametric representation of network
– #layers #conv-layers #pool-layers

– #layer1-size #layer2-size …

– #conv1-size #conv2-size …

– #pool1-size #pool2-size …

● Loss function : best precision with parametric trained network
● All right, doing gradient descent again ?
● Additionnal constraints

– Each point is very expensive to calculate (full training)

– The loss function is not derivable (even numerically)
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Black Box / Zero-Order Optimization

Non derivable f function
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Grid and Random Search

Dimensionality
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CMA-ES
● Covariance Matrix Adaptation 

Evolution Strategy
● Stochastic, derivative-free
● Generational adaptation of a 

population of points 
● Elimination of worst point → 

covariance matrix estimation
● Quasi-newton method 

(approximation of Hessian)
● Very efficient if function is 

cheap to compute O(dim2)

Hansen & Ostermeier, 
Completely Derandomized 
Self-Adaptation in Evolution 
Strategies, 2001
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Data-driven Sampling

Sample Data

Compute a Fit

Evaluate Best 
Next Sampling

Best algorithm : Bayesian Optimization
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Bayesian Inference

Prior
Data Likelihood

Normalization

Model Plausibility
→ posterior

Recurrence
if new data

Model inference 
from data
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Gaussian Process

● Infinite extension of multi-variate Gaussian
● Arbitrary dimension
● Defined by mean(x) and sigma(x)



22

Gaussian Process Regression

● Variance is a function of the distance
● Possible to add noise regression
● Good representation of the so-far collected data

Matérn stationary covariance kernel 

Bertil Matérn, Spatial Variation, 1960
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Where to search ? Promising points

Can we express this as a function ?
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Acquisition functions

● Upper Confidence Bound (UCB)

● Esperance of Improvement (EI or EOI)

● Probability of Improvment (PI or POI)
● Entropy search (PES)
● Thomson sampling (TS)

● Easy to compute
● Rely only on Gaussian process
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Bayesian optimization

 Jonas Mockus, Bayesian Approach to Global Optimization, 1989
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Exploitation vs Exploration

Computational 
performance 
vs
Exhaustivity
(local extremum)

Question : How to optimize hyper-parameters of hyper-
parameter optimizer ?
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Limitation: Curse of Dimensionality

● Necessary data amount grows exponentially with 
dimension

● Concerns all « neighbouring » fit techniques
● BO is limited in dimension (around 20-30)
● Neural nets are not concerned because their loss 

function has a special shape (self-regularization)
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HGCal Trigger

● Serenity platform
– Generic platform developped by 

Imperial College

– Data aggregation on optical links

– Interconnection between different 
layers of boards → distributed 
algorithm

– Implement clustering algorithm 
with particle ID and energy 
evaluation

– Limited amount of resources and 
latency → need for good 
approximation
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HGCal Test Case

● Particle ID : pion vs electron shower 
classification

● Samples simulated by CMSSoftware on 
HGCal model

● Output : binary choice
● Neural networks

– Multi-layer perceptrons (max 15 layers)
– Limited global number of neurons

● Bayesian optimization on #neurons per layer 
space
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Integrated Neural Network Automatic Trainer and Evaluator

● Runtime encapsulate all 
algorithmic complexity 

→ ease of development
● Based on Keras & Tensorflow



  

Innate API
import innate

#connect to scheduler

ie=innate.init("llrinnate.in2p3.fr")

#launch a simple training (can be asynchronous)

res=innate.train_net(ie,task_name,nn_filename,data_filename,

results_folder,nb_epochs=1000)

#plot result

print("elapsed time :"))

print("%s"%(res["etime"]))

innate.plot_loss(res)
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Grid search topology exploration

● Exploring in a 3 layers 
topology between 1 and 
2000 neurons

● Inputs : cluster energies 
per layer 

● Precision=1-efficiency 
(pion seen as electrons)

● 294 points
● Best point : 750 1000 750 

with precision  0.985977
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Bayesian Optimization

● Bayes-opt implementation

● Only 100 points 

– 20 random points

– 80 fit points

– Could be optimized (50)

● Best point : 1341 835 1117 
with precision 0.985696

● Same precision with 1/3 
points
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Global Performance over 
Resource Avaibility

● Taking different max size and searching for best 
size

● Max 15 layers

Best network : 38x174x302x4x492x11x1
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Perspectives

● Add PyTorch to Innate
– All exciting new technos are there !

● Try different flavour of neural network
– Graph convolution (non euclidian)

– Study portability on FPGA

● Implement Parallel Bayesian Optimization
● Participate to the « Think IN2P3 project »
● Implement an optimal DNN for level 1 trigger in 

CMS HGCal
● Keep the trend in a VERY prolific domain !!
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