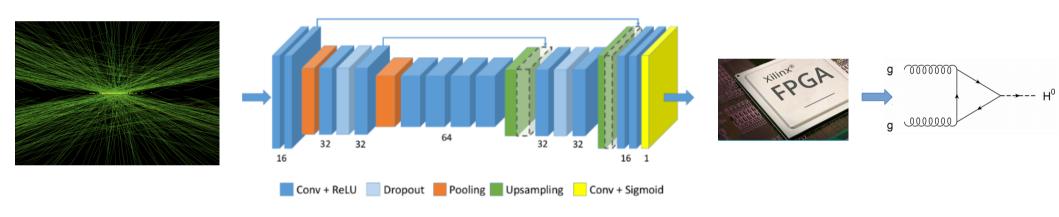
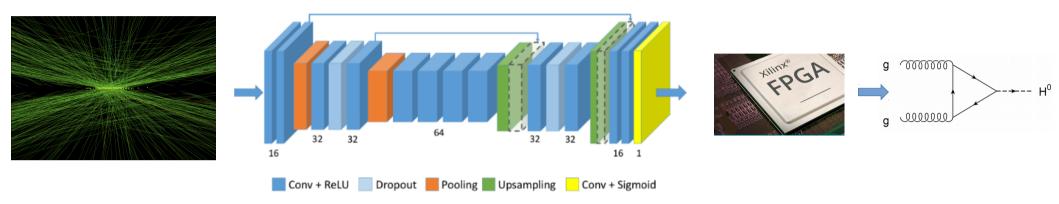
Neural-network Topology Bayesian Optimization for FPGA implementation



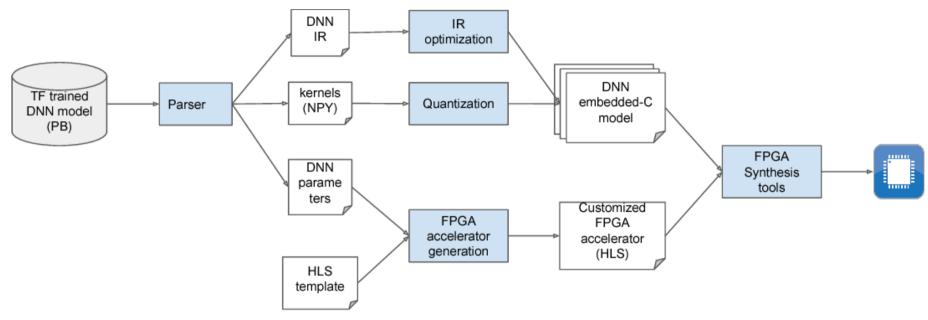
Frédéric Magniette Journées online inter-réseaux 2019

Introduction



- Pileup → complicated Trigger algorithm
- Evaluating particle ID and energy
- Hard to implement in FPGA (loops, maths...)
- Complicated algorithms can be replaced by NN
 - Trained on simulations
 - Implemented on FPGA

DNN in FPGA

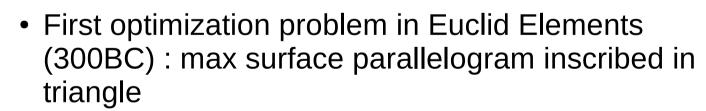


- Easy implementation : dedicated tools
- Conversion software from model to hardware
- Using dedicated functionnal block (DSP, dedicated computation units)
- Key point : precision

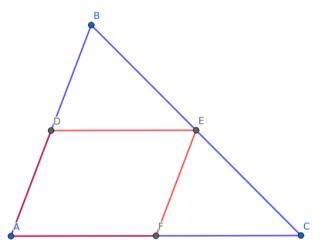
How to optimize resources to get the best precision?

Optimization: an easy question... a hard answer

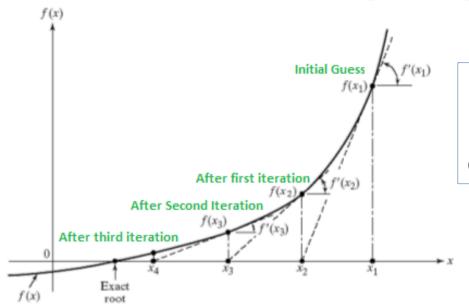
$$argmin(f(\mathbf{x})) = \{ \mathbf{y} \mid \forall \mathbf{x}, f(\mathbf{y}) \le f(\mathbf{x}) \}$$



- Easy general formulation
- First general answer with differential calculus 2000 years later
 - f'(x)=0 and f''(x)>0
 - Requires analyticity, derivability and solvability



A first heuristic

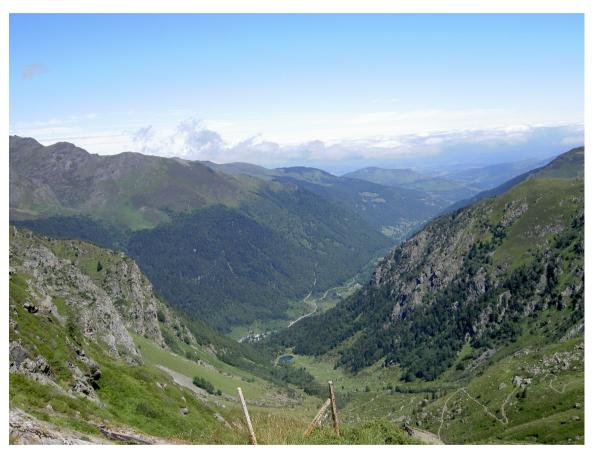


$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Crazy! Coming to me from the sky!

- First heuristic by Newton
 - iterative method to find a zero of the derivative
- Only local derivatives required
- But: Hessian matrix computationally very expensive
 - → need a first order solution

Optimization as a Blind Walk

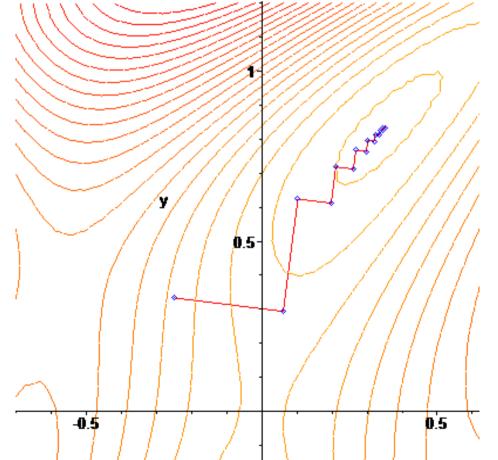


- « Following the slope » method
- Only local knowledge of the field required
- Known as gradient descent algorithm class
- Proposed by Cauchy in 1847

Gradient Descent

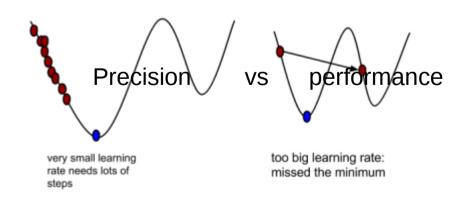
First Idea: following the slope by calculating the gradient vector

$$\nabla J(\Theta) = \left\langle \frac{\partial J}{\partial \Theta_1}, \frac{\partial J}{\partial \Theta_2}, \dots, \frac{\partial J}{\partial \Theta_n} \right\rangle$$

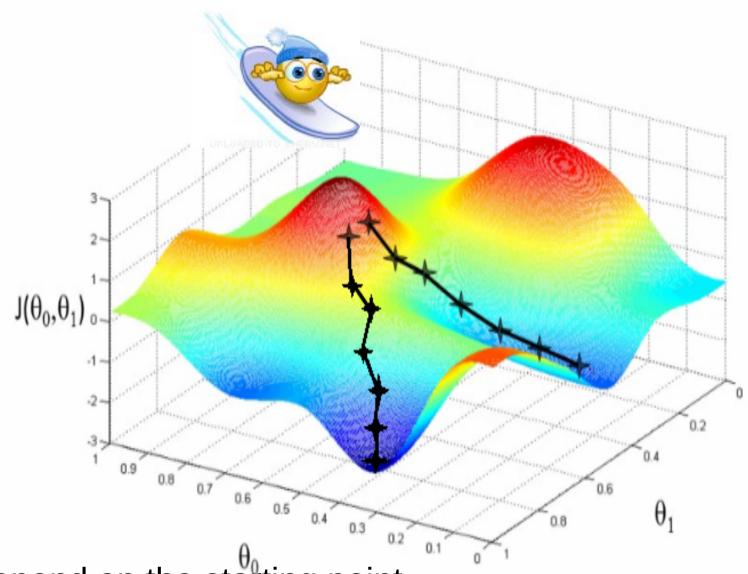


$$\Theta = \Theta - \alpha \nabla J(\Theta)$$

α: step size

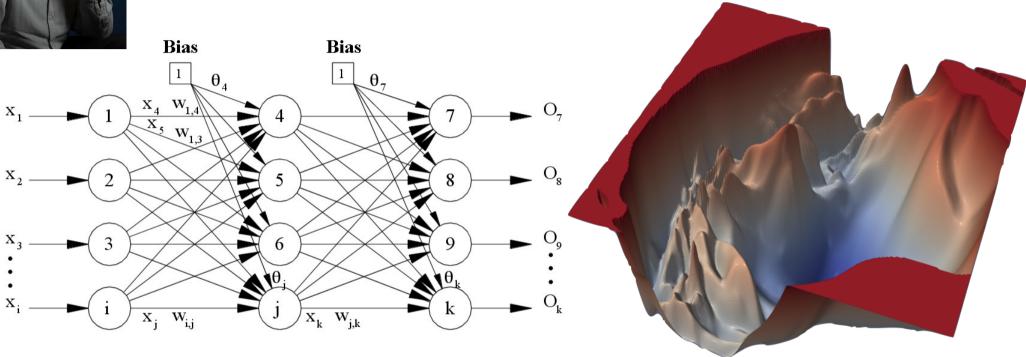


Gradient Descent & Convexity



- Depend on the starting point
 - → require convexity (unique minima)
- Practical solution : multiple random starts

Neural Networks



- Learn an algorithm by labelled data
- Li & al, « Visualizing the loss landscape of neural nets, 2018, 1712.09913

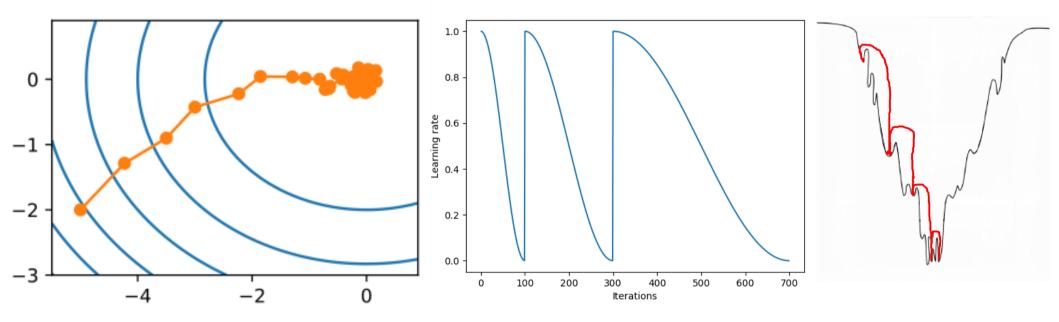
- Invented by Yann Lecun
- Optimization space $w_{ij} \& \theta_i$ named globally θ
- Function to optimize : loss function $L(\theta)$
- Searching for a good minimum in the loss function

Why does it work?

- perceptron → spherical spin-glass model
- theoritical results reuse
 - #min_{loc} α e^{dim}
 - #Bad_min_{loc} α e^{-dim}
 - Good local minimum : $loss(min_{loc}) loss(min_{glob}) \leq \epsilon$
 - Funnel global shape
- Global minimum is overfitting
- Deep learning (dim is big) gives better results

Lecun & al, The loss surface of multi-layer networks, 2015, 1412.0233

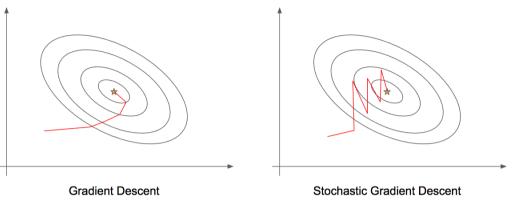
Convergence speed and avoiding local minimas

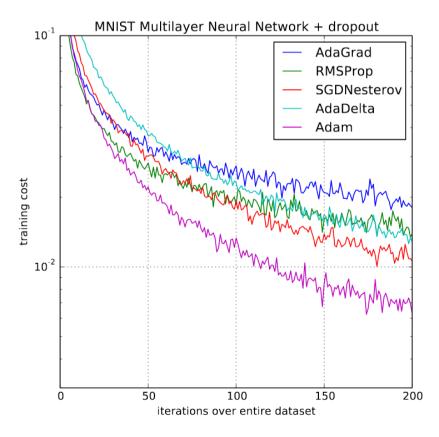


- Adaptive learning rate
 - Big step in big steep → speed up convergence
 - Smaller steps in the hole → increase precision
- Avoid bad local minimas
 - cosine annealing → restarts jump to another local minima

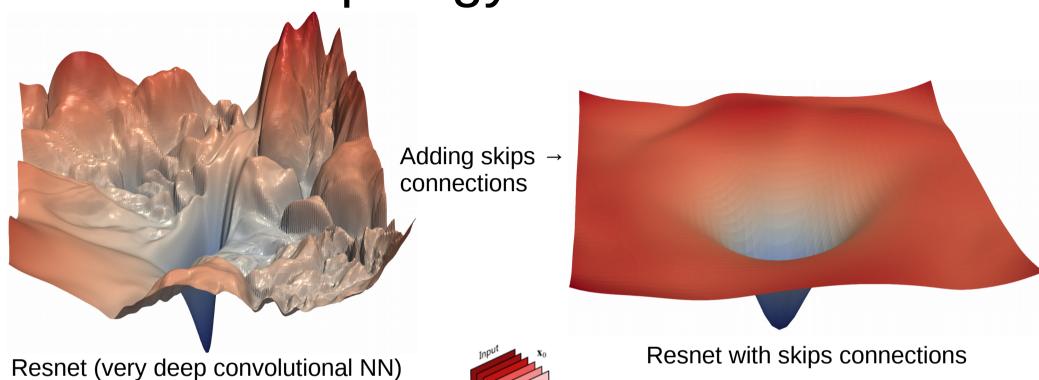
Optimizers for DNN

- Gradient descent implies huge storage of derivatives O(dimension*#inputs) for each update
- SGD slices the problem input by input: slower the convergence and add variance but save space
- Big diversity of SGD derived algorithm
- Adam: a method for stochastic optimization, Kingma & Ba, 2017, 1412.6980
 - Automatic adaptative learning rate per parameter
 - Best performance ever → rules the world

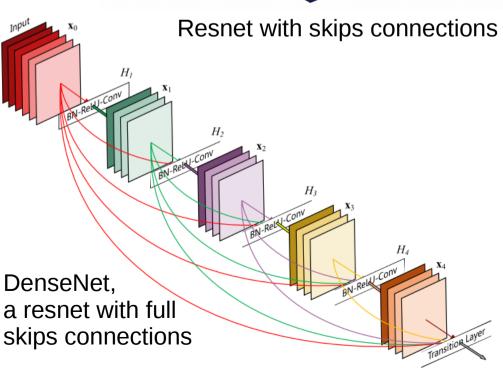




Topology Influence

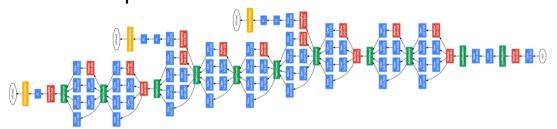


Topology influences dramatically the loss surface shape



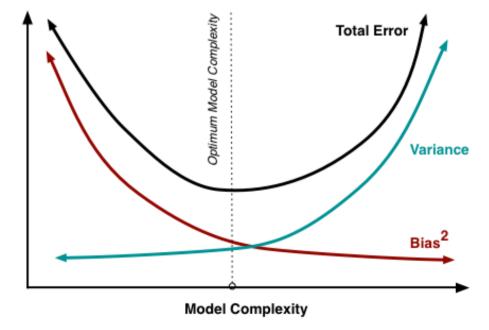
Two reasons to optimize topologies

1. Getting best distribution of neurons / convolutional kernel / pooling / skip connections for fixed resource consumption in FPGA

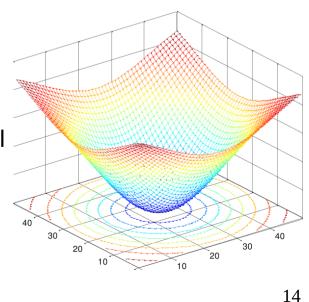


- · No thumb-rule
- Often qualified as a dark-art

2. Find the bias-variance tradeoff



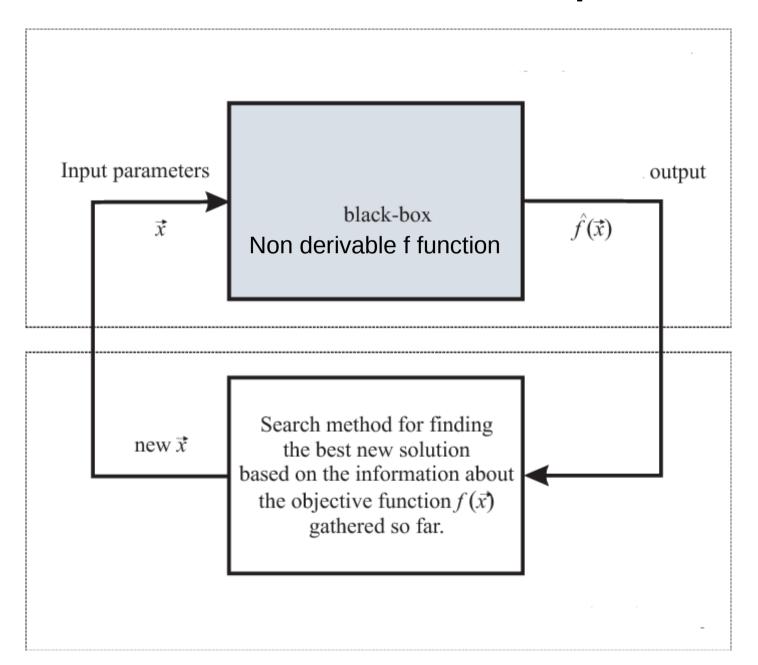
- Too simple model
 → fit error
 - increased
- Too complicated model → statistical error (variance) increased
- Gives a hope for global convexity
- Help us saving resources



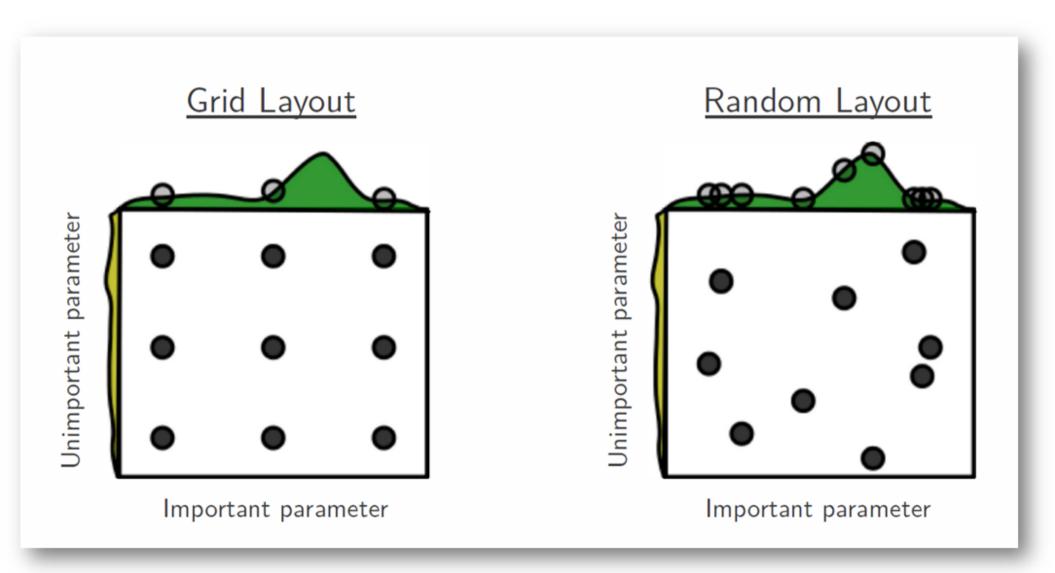
Topology Optimization

- Best topology (in terms of precision) under resource consumption constraint: again an optimization problem
- Parameter space : parametric representation of network
 - #layers #conv-layers #pool-layers
 - #layer1-size #layer2-size ...
 - #conv1-size #conv2-size ...
 - #pool1-size #pool2-size …
- Loss function: best precision with parametric trained network
- All right, doing gradient descent again ?
- Additionnal constraints
 - Each point is very expensive to calculate (full training)
 - The loss function is not derivable (even numerically)

Black Box / Zero-Order Optimization



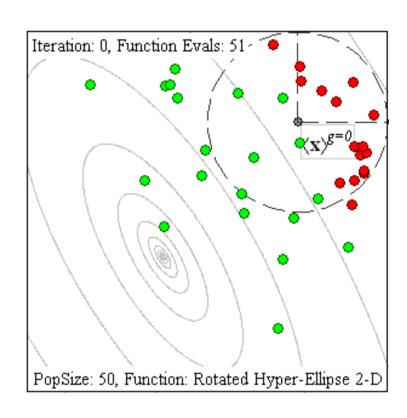
Grid and Random Search



Dimensionality

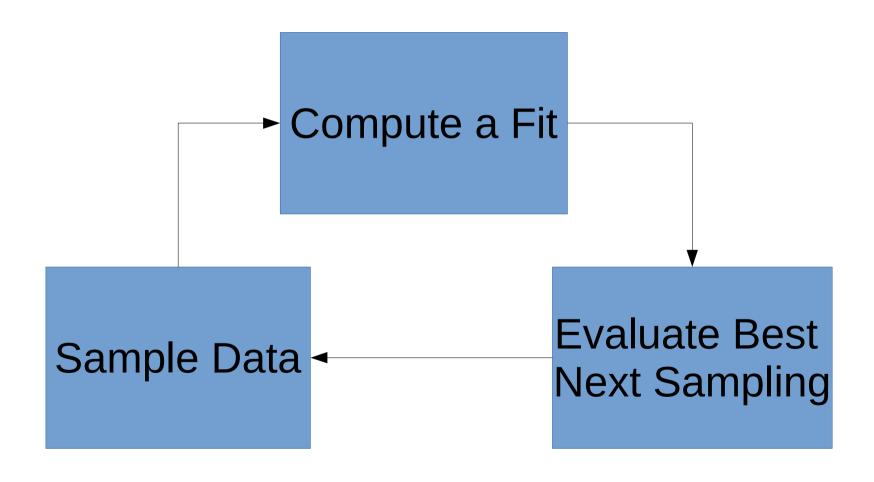
CMA-ES

- Covariance Matrix Adaptation Evolution Strategy
- Stochastic, derivative-free
- Generational adaptation of a population of points
- Elimination of worst point → covariance matrix estimation
- Quasi-newton method (approximation of Hessian)
- Very efficient if function is cheap to compute O(dim²)



Hansen & Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, 2001

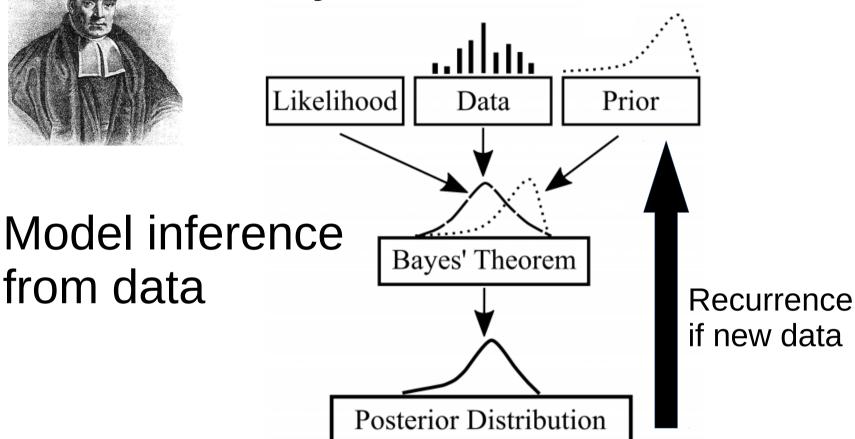
Data-driven Sampling

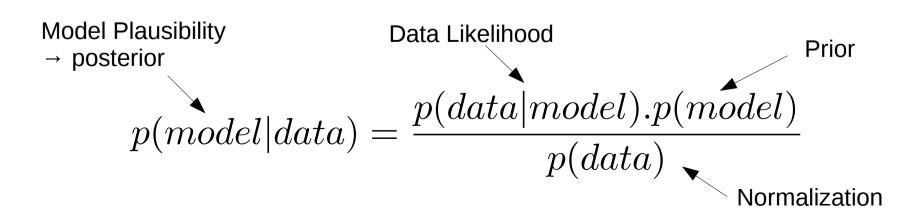


Best algorithm: Bayesian Optimization

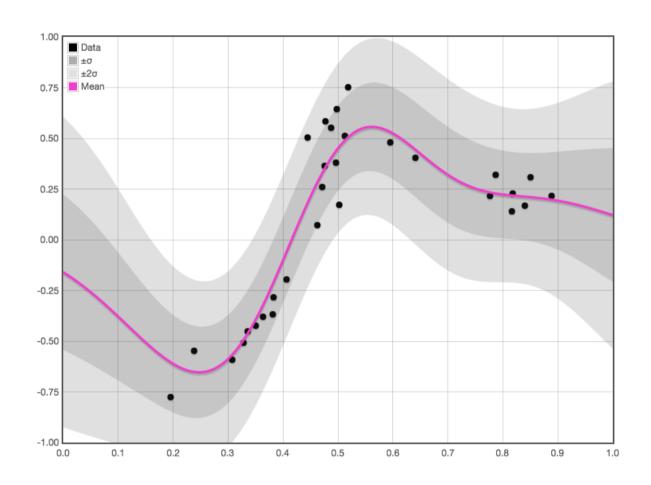
from data

Bayesian Inference



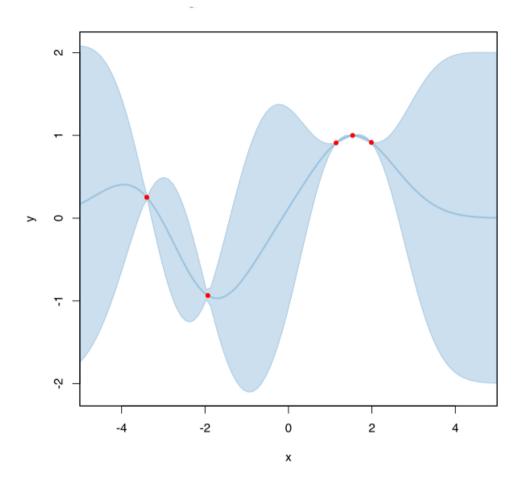


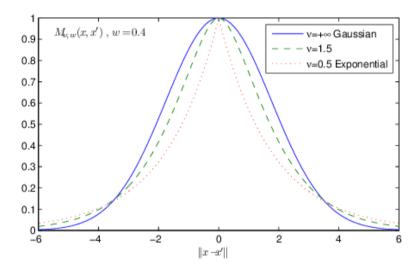
Gaussian Process



- Infinite extension of multi-variate Gaussian
- Arbitrary dimension
- Defined by mean(x) and sigma(x)

Gaussian Process Regression





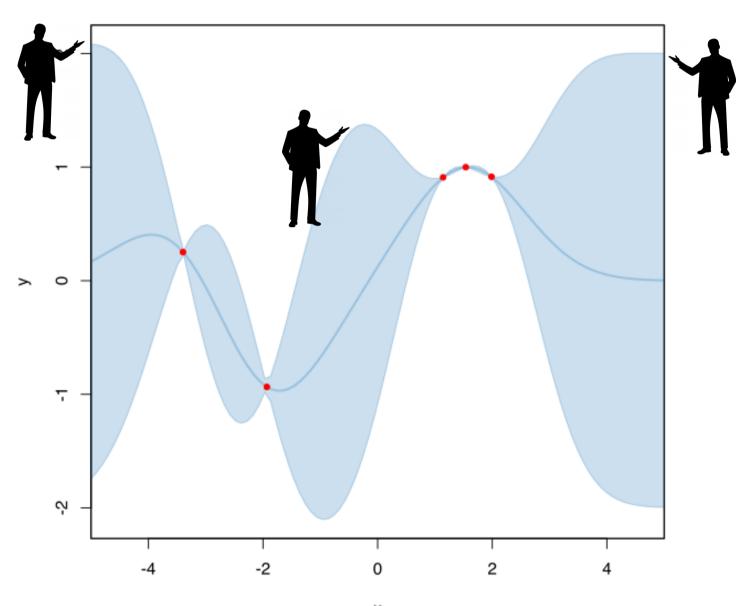
Matérn stationary covariance kernel

$$k(x_i, x_j) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{d(x_i, x_j)}{l} \right)^{\nu} K_{\nu} \left(\sqrt{2\nu} \frac{d(x_i, x_j)}{l} \right)$$

Bertil Matérn, Spatial Variation, 1960

- Variance is a function of the distance
- Possible to add noise regression
- Good representation of the so-far collected data

Where to search? Promising points



Can we express this as a function?

Acquisition functions

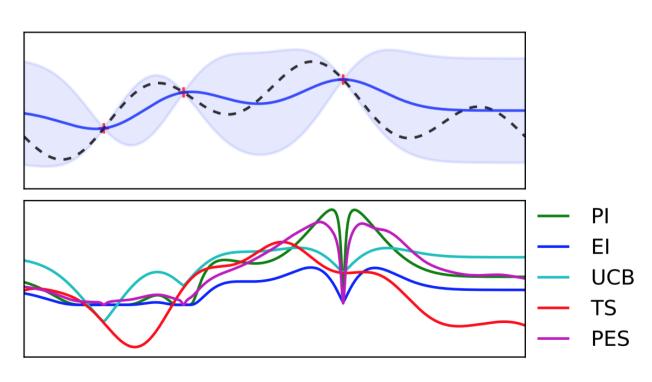
Upper Confidence Bound (UCB)

$$A(x) = \pm \mu(x) + \kappa \sigma(x)$$

Esperance of Improvement (El or EOI)

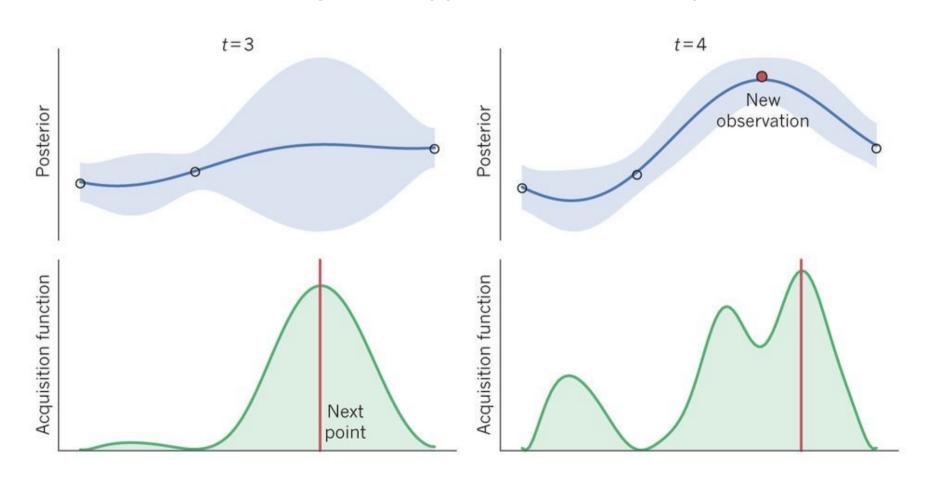
$$EI(x) = \mathbb{E}(max(f(x) - f_{max}, 0))$$

- Probability of Improvment (PI or POI)
- Entropy search (PES)
- Thomson sampling (TS)
- Easy to compute
- Rely only on Gaussian process



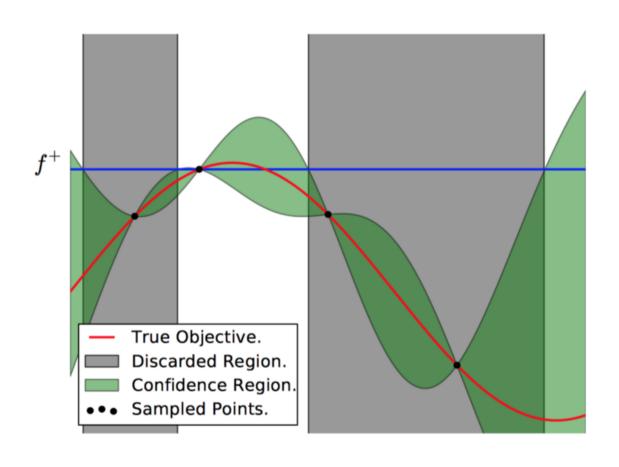
Bayesian optimization

Jonas Mockus, Bayesian Approach to Global Optimization, 1989



Exploitation vs Exploration

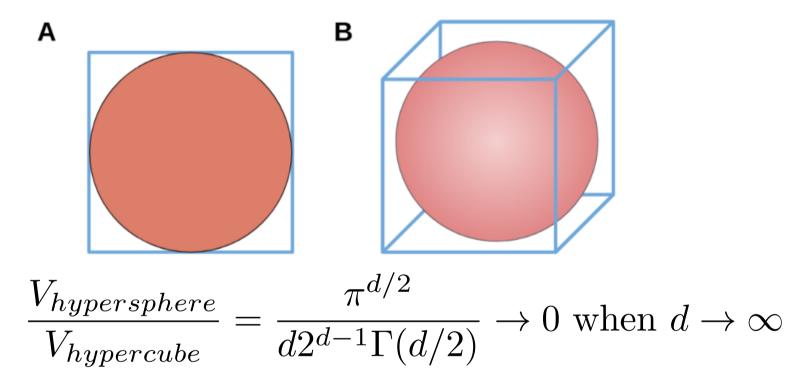
$$A(x) = \pm \mu(x) + \kappa \sigma(x)$$



Computational performance vs Exhaustivity (local extremum)

Question: How to optimize hyper-parameters of hyper-parameter optimizer?

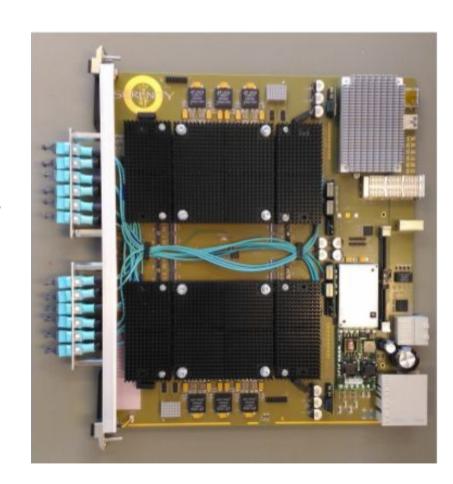
Limitation: Curse of Dimensionality



- Necessary data amount grows exponentially with dimension
- Concerns all « neighbouring » fit techniques
- BO is limited in dimension (around 20-30)
- Neural nets are not concerned because their loss function has a special shape (self-regularization)

HGCal Trigger

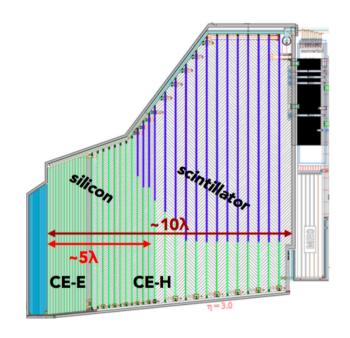
- Serenity platform
 - Generic platform developped by Imperial College
 - Data aggregation on optical links
 - Interconnection between different layers of boards → distributed algorithm
 - Implement clustering algorithm with particle ID and energy evaluation
 - Limited amount of resources and latency → need for good approximation

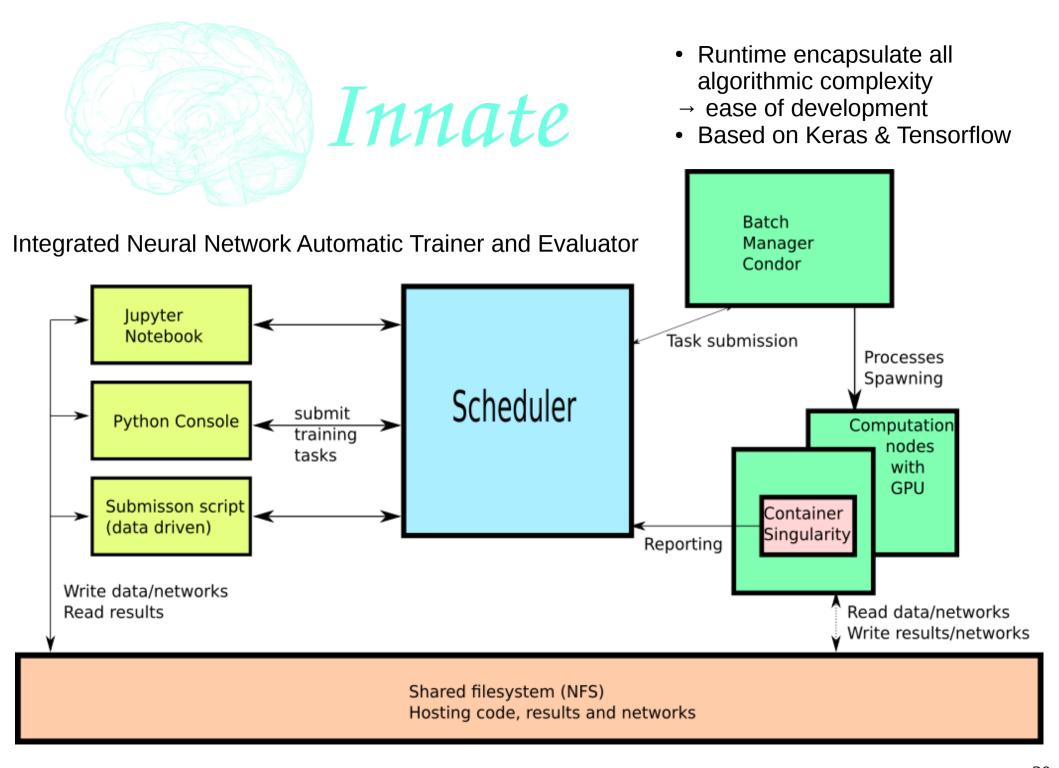


HGCal Test Case

- Particle ID : pion vs electron shower classification
- Samples simulated by CMSSoftware on HGCal model
- Output: binary choice
- Neural networks
 - Multi-layer perceptrons (max 15 layers)
 - Limited global number of neurons

Bayesian optimization on #neurons per layer space





Innate API

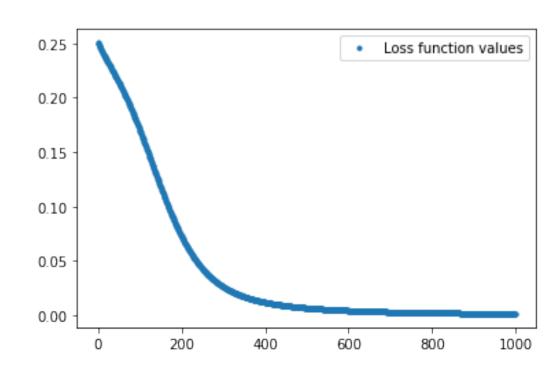
```
import innate

#connect to scheduler
ie=innate.init("llrinnate.in2p3.fr")

#launch a simple training (can be asynchronous)
res=innate.train_net(ie, task_name, nn_filename, data_filename,
```

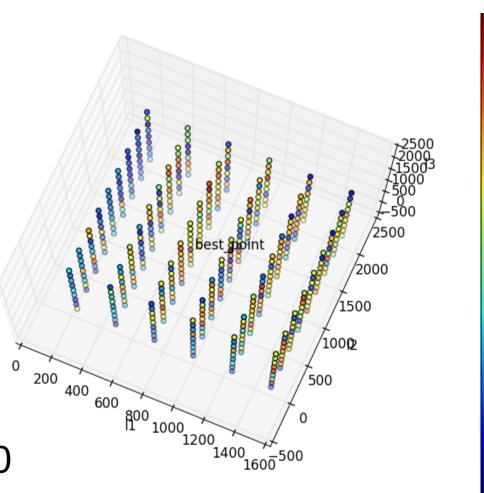
#plot result
print("elapsed time :"))
print("%s"%(res["etime"]))
innate.plot_loss(res)

results folder, nb epochs=1000)



Grid search topology exploration

- Exploring in a 3 layers topology between 1 and 2000 neurons
- Inputs : cluster energies per layer
- Precision=1-efficiency (pion seen as electrons)
- 294 points
- Best point: 750 1000 750 with precision 0.985977



0.9856

0.9848

0.9840

0.9832

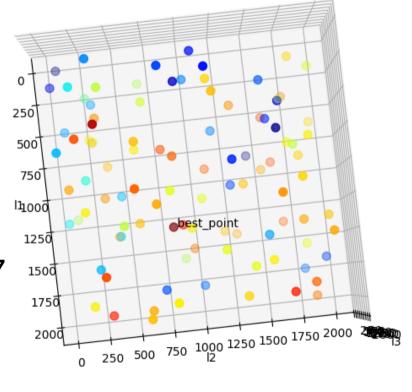
0.9824

0.9816

0.9808

Bayesian Optimization

- Bayes-opt implementation
- Only 100 points
 - 20 random points
 - 80 fit points
 - Could be optimized (50)
- Best point: 1341 835 1117 with precision 0.985696
- Same precision with 1/3 points



- 0.985

- 0.984

- 0.983

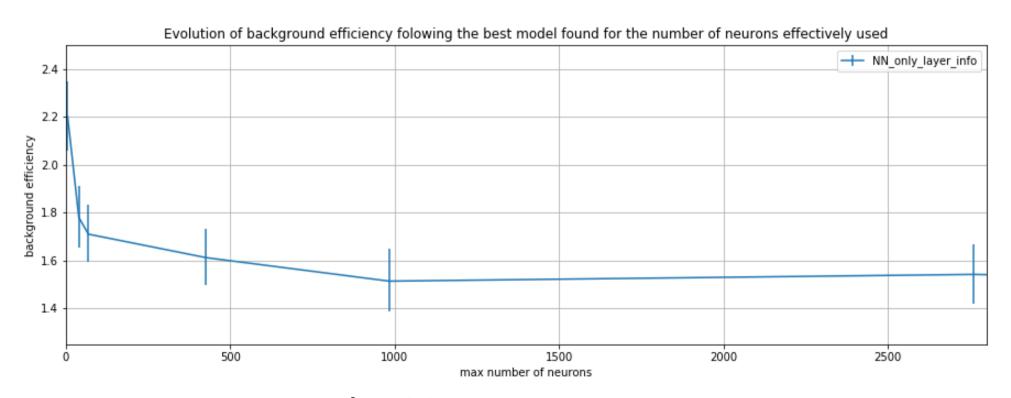
- 0.982

- 0.981

0 986

Global Performance over Resource Avaibility

- Taking different max size and searching for best size
- Max 15 layers



Best network: 38x174x302x4x492x11x1

Perspectives

- Add PyTorch to Innate
 - All exciting new technos are there!

- Graph convolution (non euclidian)
- Study portability on FPGA
- Implement Parallel Bayesian Optimization
- Participate to the « Think IN2P3 project »
- Implement an optimal DNN for level 1 trigger in CMS HGCal
- Keep the trend in a VERY prolific domain !!

