Run: 359058

Event: 2965933740

2018-08-25 02:51:44 CEST

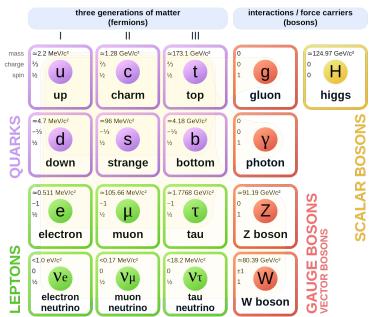
First Year Presentation:

Search for Higgs pair production at LHC Collider: First Measurement for Higgs Potential and Search

of new physics

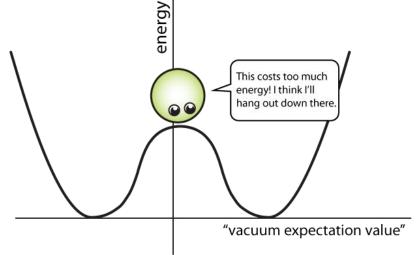
Mohamed BELFKIR
29-11-2019

Supervised by : Stephane Jezequel



Introduction

- Keywords: Higgs, Higgs Potential, Higgs pair production, New Physics.
- Higgs: massive (~125 GeV) elementary particle discovered in 2012 at CERN by the two largest experiments ATLAS & CMS.
 - Responsible of mass generation to other particles via spontaneous symmetry breaking EWSB.

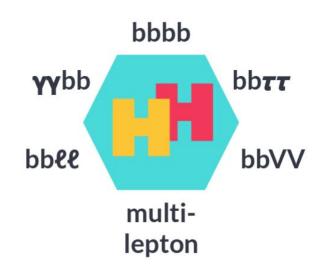

Standard Model of Elementary Particles

Higgs Potential

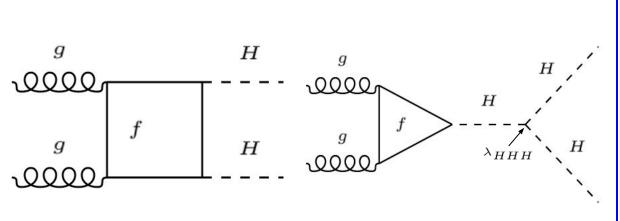
- Scalar field of energy exist in every region of the universe.
- Variation around the minimum gives:

$$V(\phi) = -\frac{1}{2}m_H^2h^2(x) + \lambda_{HHH}h^3(x) + \lambda_{HHH}h^4(x)$$

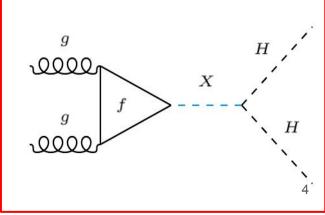
Higgs field


Trilinear coupling

What we want to know!

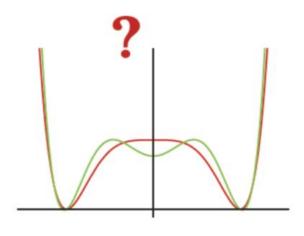


Higgs pair production - HH


- Two Higgs bosons produced in a single pp collision.
- Provide a direct access to Higgs self-coupling.

Non-Resonant

Resonant



New Physics?

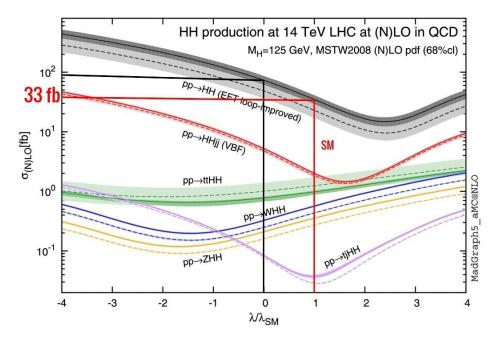
- Self-coupling value not known yet,
 What if the real value is different from its SM value?
- This variation opens windows to new physics.
- Quantified by :

$$\kappa_{\lambda} = \frac{\lambda_{BSM}}{\lambda_{SM}}$$

Full Run-2 data will provide best limit in the world to:

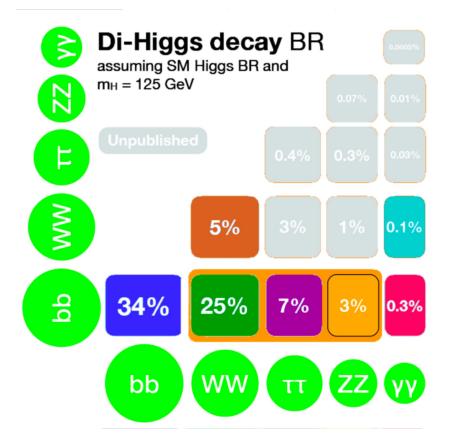
$$\frac{\sigma_{BSM}(gg \rightarrow HH)}{\sigma_{SM}(gg \rightarrow HH)}$$

Cross section


$$\kappa_{\lambda} = \frac{\lambda_{BSM}}{\lambda_{SM}}$$

Self-coupling

HH cross section

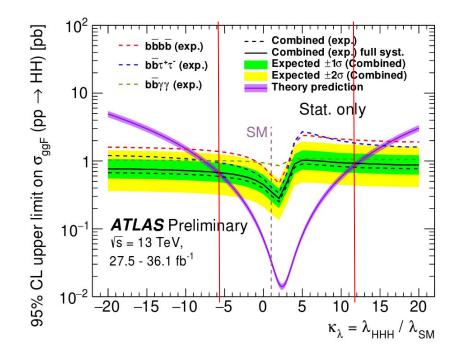

- ~1000x smaller than single Higgs
- BSM effects could enhance this rate.

HH decay channels

- Different decay modes, combination of single Higgs decay channels.
- LAPP : $HH \rightarrow bb\gamma\gamma$

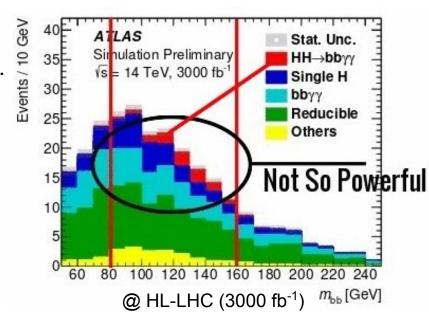
Why bb $\gamma\gamma$?

- It's a golden channel because :
 - Experimental reason :
 - High H→bb branching ratio → more events
 - Best photon resolution \rightarrow best m_{yy} resolution
 - Historical reason :
 - Photons: LAPP built EM calorimeter.
 - B-Jet: LAPP built IBL (pixel detector).



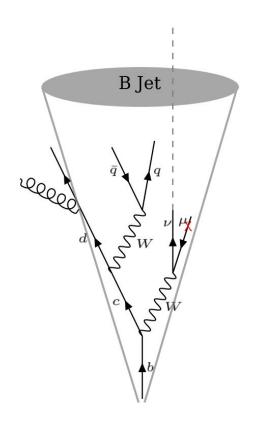
Order of magnitude

- Current limit (~36fb⁻¹): [-5.2,11.4] (Best limit in the world until now).
- Full Run 2 integrated luminosity: 139 fb⁻¹
- Gain ~√139/36 with full Run 2 data.
- Can gain more ?

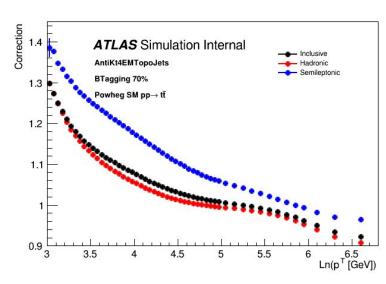

Single Higgs	НН	HH→bbγγ	selection		
1 event / 1s	3 events / 1h	1 event / 5day	1 event / 100day		

How to enhance the selection to select more HH events?

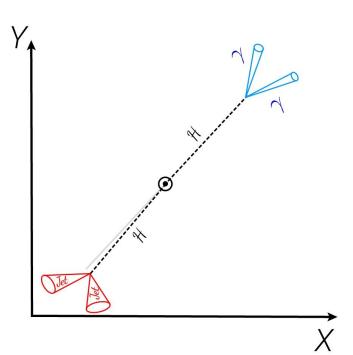
M_{bb} resolution

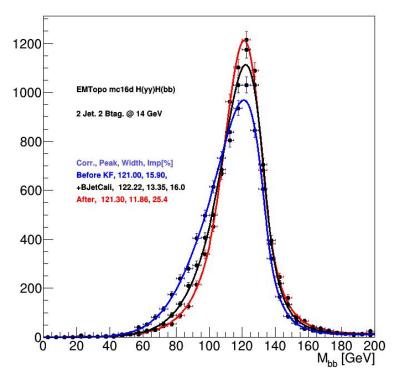

- One of the reasons behind the low selection is: m_{bb} resolution
- Worst resolution :
 - o reduce m_{bb} separation power.
- The b-jet energy is not fully reconstructed.
- → Calibrate the b-jet energy in order to recover the missing energy.

B-Jet Calibration

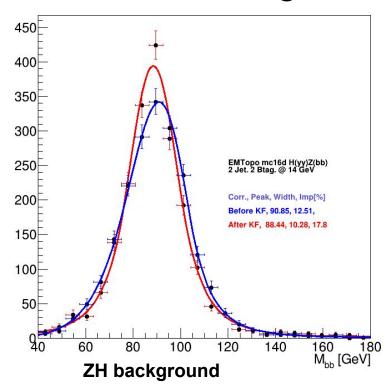

- B-jet : large fraction of missing energy
 - B-hadron decay
 - Presence of muons
 - Neutrions
 - Out of cone radiation
- Not handled by the current calibration mechanism.
- Proposal solution, a jet-by-jet correction : B-Jet
 Calibration
 - A decoupled method to correct those effects.
 - Not only for HH but for any analysis include b-jet in the final state.

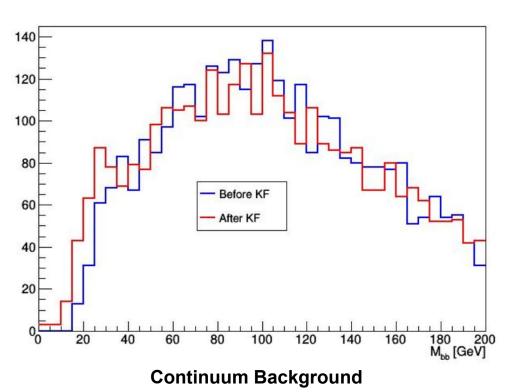
BJetCalibrationTool


- I develop a tool to correct b-jet via two corrections:
 - Muon-in-jet correction :
 - Correct muon effect, by adding the muon to jet.
 - pTReco correction :
 - Correct the out-of-cone and neutrino effects by scaling initial jet 4-vector.
- Similar improvement as advanced methods (Machine Learning).
- Presented in different ATLAS groups.
 - Talk at DiHiggs Workshop @ CERN, March 2019
 - Poster at HDBS Workshop @ Naples, June 2019


Kinematic Fit

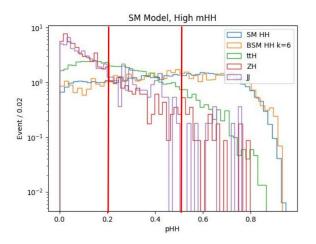
- Additional to jet-by-jet correction.
- An Event-by-Event correction : Kinematic Fit
 - Profit from very good m_{yy} resolution.
 - Constrain the HH system using a likelihood.
 - Calibrate the HH event.
- Aim to better HH reconstruction.
- Relevant only for HH \rightarrow bb $\gamma\gamma$.
- Kinematic Fit Tool developed.

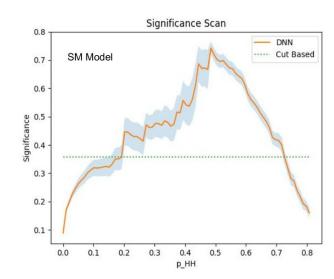

Results - Signal



- More than 25% improvement in m $_{\rm bb}$ resolution \to better signal-background separation Expected improvement of ~12% in S/ \sqrt{B}

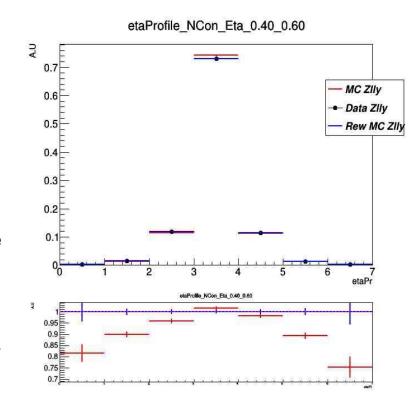
Results - Background





Analysis Strategy

- Improve signal to backgrounds separation, with ML technics.
 - DNN approach chosen
- Additional to the DNN, I include a new set of variables which improve the separation by ~7%.
- Preliminary results :
 - Significance improve by ~100% versus Cut based.



Shower shape reweighting

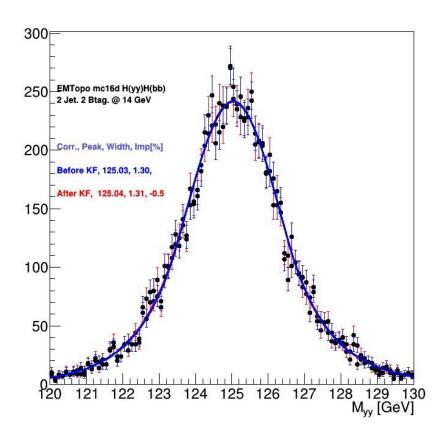
- In parallel to the analysis work, an ATLAS qualification task (QT) to get the autorship.
- QT object : calibrate simulated photon shower shape to reduce the Data/MC discrepancy.
 - Discrepancy → large systematic in H→ yy.
 - This discrepancy has many sources: Shower modeling, detector matter ...
 - Reweighting approach is designed to correct those effects at cell level.
 - O My work is:
 - Select Z→eey events and retrieve EM cells.
 - Attempt to apply electron method to photons.
 - → Develop more evolved reweighting method.
- This work should finish next month.

What's next?

- Documentation of B-jet Calibration and Kinematic Fit.
- Finalise the DNN approach and QT.
- Contribute to HH combination.
- Start new machine learning approach for photon identification @ cell level.
- Participation in supervising of a ukrainian M1 student.

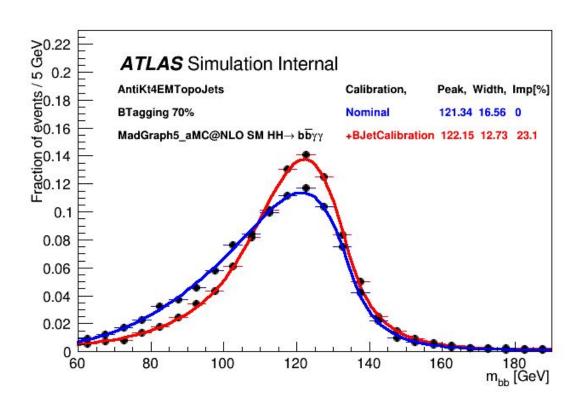
Schools and Workshops

- Schools:
 - Machine Learning summer school @ Desy, July 2019
- Validation of 80/120 h courses requested by ED.
- Accepted for RES label (To be completed in the following 2 years).


Summary

- Di Higgs Production with full Run 2
 - Jet-by-jet correction : <u>BJetCalibrationTool</u> <u>BJetCorrectionTWiki</u>
 - Event-by-event correction : <u>KinematicFitTool</u>
 - Analysis Strategy : DNN + New Variables
- QT : Shower shapes :
 - ATLAS authorship
- Next:
 - o HH non-resonance combination
 - PhotonID @ cell level

Backup



Photon resolution

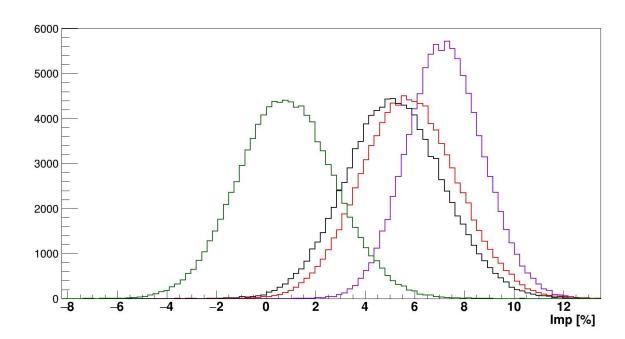
B-Jet resolution

Likelihood

$$\mathcal{L} = \prod_{\substack{i=1\\ \text{njets}}}^{2} G_{\gamma_{i}}(\phi^{*}; \phi, \sigma_{\phi}) \times G_{\gamma_{i}}(\eta^{*}; \eta, \sigma_{\eta}) \times G_{\gamma_{i}}(E^{*}; E, \sigma_{E}) \\
\times \prod_{\substack{i=1\\ \text{njets}}}^{2} G_{jet_{k}}(\phi^{*}; \phi, \sigma_{\phi}) \times G_{jet_{k}}(\eta^{*}; \eta, \sigma_{\eta}) \times G_{jet_{k}}(E^{*}; E \times \mu_{E}, \sigma_{E}) \times L^{b-jets} \\
\times G(\sum_{i=1}^{k} P_{x}^{\gamma_{i}} + \sum_{k=1}^{k} P_{x}^{jet_{k}}; 0, \sigma_{Pxy^{b\bar{b}\gamma\gamma}}) \times G(\sum_{i=1}^{k} P_{y}^{\gamma_{i}} + \sum_{k=1}^{k} P_{y}^{jet_{k}}; 0, \sigma_{Pxy^{b\bar{b}\gamma\gamma}}), \tag{1}$$

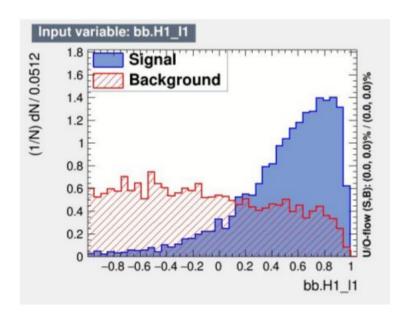
$$\sigma_E = \sigma_E(P_T^{jet_k}), \ \mu_E = \mu_E(P_T^{jet_k}), \ L^{b-jets} = L^{b-jets}(P_T^{jet_k})$$
 (2)

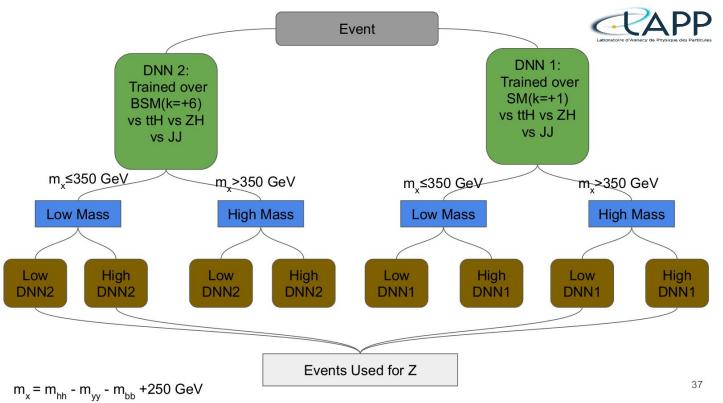
where i number of photons (2) and k number of jets (2 B - Jet + Add. Jet).


Fraction of events

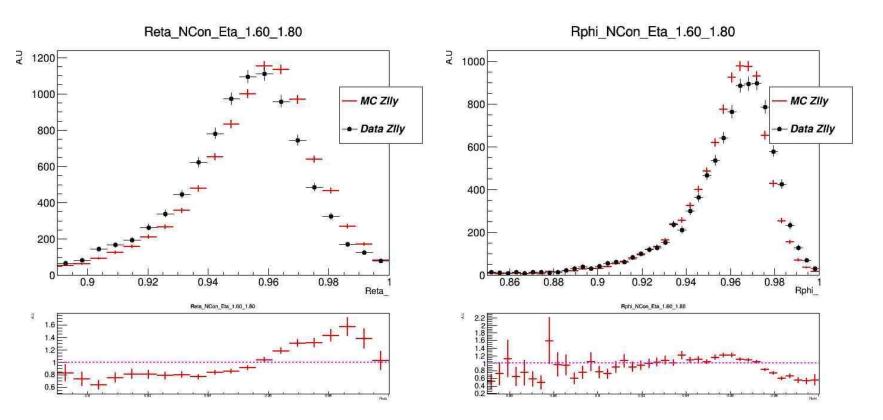
Category	0 Add. Jet	1 Add. Jet	> 2 Add. Jet		
Fraction [%]	19	31	50		

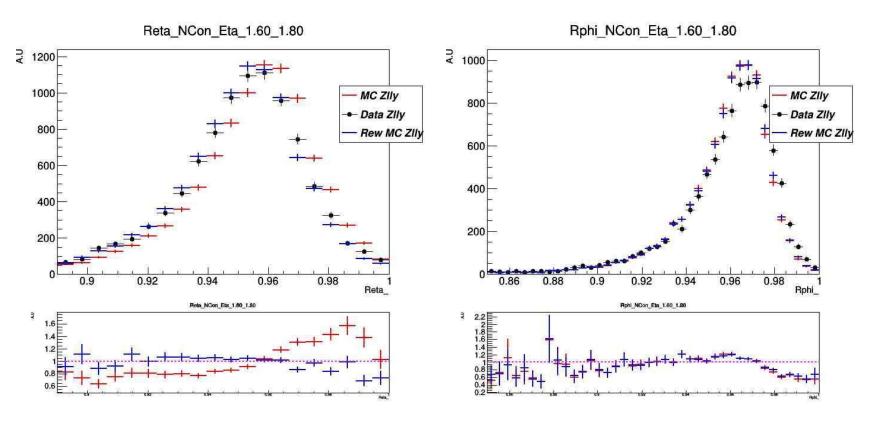
Bootstrap


 Use bootstrap method to estimate the improvement in Significance

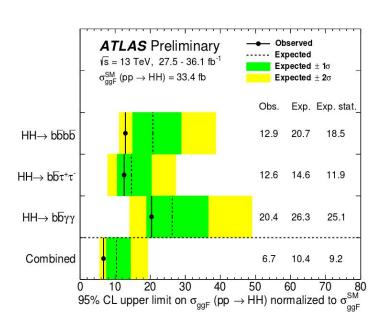

Fox-Wolfram moments

 Rotationally invariant observables which characterizes the shapes of events.


$$H_{I}^{ imes} = \sum_{\substack{i,j \ i
eq j}}^{N} W_{ij}^{ imes} P_{I}(cos\Omega_{ij})$$
 $W_{ij}^{T} = rac{P_{Ti}P_{Tj}}{(\sum P_{Ti})^{2}}$
 $W_{ij}^{P} = rac{P_{i}P_{j}}{(\sum P_{i})^{2}}$
 $W_{ij}^{I} = 1$
 $W_{ij}^{\eta} = rac{|\eta_{i} - \bar{\eta}|^{-1}|\eta_{j} - \bar{\eta}|^{-1}}{(\sum |\eta_{i} - \bar{\eta}|^{-1})^{2}} \; ; \; \bar{\eta} = rac{1}{2}(\eta_{i} + 2\eta_{j})$



Shower shape (1)


Shower shape (2)

Current limit

Search channel	Allowed κ_{λ} interval at 95% C.								
	obs.			exp.			exp. stat.		
$HH \to b \bar{b} b \bar{b}$	-10.9	_	20.1	-11.6	_	18.7	-9.9	_	16.4
$HH \to b\bar{b}\tau^+\tau^-$	-7.3	_	15.7	-8.8	_	16.7	-7.8	-	15.4
$HH \to b \bar b \gamma \gamma$	-8.1	-	13.2	-8.2	_	13.2	-7.7	-	12.7
Combination	-5.0	-	12.1	-5.8	_	12.0	-5.2	-	11.4

Table 1: Allowed κ_{λ} intervals at 95% CL for each search channel and their combination. The column "obs." represents the observed κ_{λ} intervals, "exp." the expected κ_{λ} intervals with all statistical and systematic uncertainties, and "exp. stat." the expected κ_{λ} intervals obtained with statistical uncertainties only.

