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Current cosmology questions

Credit : NASA

What is the nature of dark
matter ?
What is the nature of dark
energy ?
Is it "dark energy" arising
from quantum fluctuations in
the vacuum, or is it new
gravitational physics ?
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Need accurate redshits for cosmology

As the universe expands, the radiation is stretched in wavelength
1 + z = λobs

λemit
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Supernovae Ia as cosmological probe

History of the Universe

Dark energy causes the universal 
expansion to accelerate

Recent observations of supernovae 
have produced a value for an 
acceleration that implies a universe 
that is about 70 % dark energy

High-z

First proof with supernovae Ia
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The spectroscopic follow-up to identify SN Ia and measure
redshift

galaxy

Identify and measure the redshift of a galaxy

Supernovae 

Determine the nature of an observed object
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The future image surveys

1 The Large Synoptic Survey Telescope (LSST)

Artist view, Credit : Todd Mason,
Mason Productions Inc. / LSST Corporation

a 10-year survey of the sky
first light in 2020
a 8.4-meter special three-mirror
design, creating an
exceptionally wide field of view,
and has the ability to survey the
entire sky in only three nights.
200 petabyte set of images and
data products !
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The future image surveys

2 Euclid

Artist view of the Euclid Satellite -©ESA

understanding the nature of the
source responsible for this
acceleration
slitless spectroscopy
launch is planned for 2021
a 6-year survey
10 billion sources will be
observed !
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The era of Big Data

1924

1989

2008

2018

2032

2027

Henry Drapper Catalog (0.2 Million)

Guide Star Catalog (20 Million)

SDSS (230 Million)

Dark Energy Survey (400 Million)

Euclid (10 billion)

Large Synoptic Survey Telescope (37 billion)
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A full photometric analysis

Use all the photometric information in several photometric bands

Light curves of Supernovae Galaxy images

In the LSST context, full photometric SN analyses 
become crucial
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Outline

1 Deep Learning

2 Photometric redshifts

3 Classification of light curves

4 Conclusion

10



General Introduction Deep Learning Photometric redshifts Classification of light curves Conclusion

History

1957 Perceptron (Rosenblatt)
1986 MLP (Rumelhart et al.)
1998 LeNet (LeCun et al.)
2012 A CNN won ImageNet (Alexnet, Krizhevsky et al.)

a=σ(∑
i=1

n

x iwi+b)
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The emergence of artificial intelligence

General + physics + Astronomy Astronomy

General + physics + Astronomy Astronomy

refereed
non refereed

machine learning year:2000-2019

deep learning year:2000-2019

12



General Introduction Deep Learning Photometric redshifts Classification of light curves Conclusion

The main property of deep learning

Input data Feature crafting Separation with a 
classifier

Input data Feature learning

The best feature  
space representation is 
found by the network

Deep learning

Classical methods
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LeNet5

Lecun et al. 1998

3 operations:

Convolution + non linearity (feature extraction)
Pooling
Fully Connected (classification)
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Convolutions
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0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1

0 1 1

0 0 1

An image A kernel

6 5 3

4 6 4

3 4 4

A convolved 
image

Convolution operation is followed by a non linear function (tanh, ReLu...)
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Convolutions

Input image in 5 channels
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Pooling

A feature map Pooling operation A subsampled feature 
map

5 1 3 0

0 1 2 7

2 1 1 4

3 1 1 2

5 7

3 4

Max in a 2x2 
sliding window 
with a stride of 2

Max in a 2x2 
sliding window 
with a stride of 2

64x64 32x32
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First step: The estimation of photometric redshift
with a deep architecture

J. Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez
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Existing methods

From Beck et al. 2016

A machine learning method   
                   (KNN) 

A template fitting method 

Preliminary results with Deep Learning methods (Hoyle 2016, 
D’Isanto 2018)

From Greisel et al. 2013
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Photometric redshifts from SDSS images using a Convolutional
Neural Network (J. Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez)
A&A, 611 :A97, 2018, arxiv: 1806.06607, code available at:
https://github.com/jpasquet/Photoz

Key elements :
1 A representative and a complete training database with r-band

magnitude ≤ 17.8 and redshift, z ≤ 0.4 (516,525 galaxies)
2 Photoz values + associated Probability Distribution Functions
3 Photoz immune to IQ variations and neighbours

contamination
4 A dedicated Neural Network architecture

Results obtained :
Clear improvements compared to other methods!
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Input SDSS galaxy images transmitted to the CNN

–  large galaxies — crowded images
21
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Our architecture

Input images of size 64x64

Output probabilities

z

Vector of posterior 
probabilities for the 
galaxy redshift to be 
in a z-bin

The estimator for z-phot is the 
centroid of the zPDF
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Performance never achieved before!

⟨Δ z ⟩=1.0×10−4

σ=9.1×10−3

η=0.31%

⟨Δ z ⟩=6×10−4

σ=1.3×10−2

η=1.35%

 Factor of 6 improvement

30 % improvement

Factor of 4 improvement

Δ z=( z phot−zspec )/(1+z spec)

σ=1.4826×MAD
MAD=Median(|Δ z−Median(Δ z )|)

η=|∆ z|>0.05
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Examples of PDFs
P

ro
ba

bi
lit

y

Redshift

-- Spectroscopic redshift                             -- Photometric redshift 
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Assess the prediction quality of our PDFs
The PIT statistic (Dawid 1984) is based on the histogram of the cumulative
probabilities at the true value. For galaxy i with spectroscopic redshift zi in the
test sample :

PITi =
∫ zi

−∞
PDFi (z)dz
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Impact of the extinction of our Galaxy on photometric
redshifts

Our method tends to overestimate redshifts in obscured regions
(confusing galactic dust attenuation with redshift dimming), unless
E(B−V ) is used for training
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Impact of the disk inclination of galaxies on photometric
redshifts

Our method automatically corrects for galactic dust reddening which
increases with disk inclination
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Neighboring galaxies

The MAD deviation is significantly improved for galaxies with fainter
neighbors (43%) compared to those without
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Summary results
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Second step: The classification of light curves of
supernovae (SN Ia/ SN Non-Ia)

Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez
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Difficulties for the classification
Many factors degrade the performance of machine learning
algorithms:

Small training databases

Data can be sparse with an irregular 
sampling

Non-representativeness between 
the training and the test databases

Training database

Test database
31
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Non-representativeness between the training and test
databases

The non-representativeness of the databases, which is a problem of
mismatch, is critical for machine learning process.
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PELICAN: a deeP architecturE for the LIght Curve ANalysis
(Johanna Pasquet, Jérôme Pasquet, Marc Chaumont and Dominique Fouchez, just
submitted)

Key elements :
1 a complex Deep Learning architecture to classify light curves

of supernovae
2 trained on a small and biased training database
3 overcome the problem of non-representativeness between the

training and the test databases
4 deal with the sparsity of data and the difference of sampling

and noise

The ability of PELICAN to deal with the different causes of
non-representativeness between the training and test databases,
and its robustness against survey properties and observational
conditions, put it on the forefront of the light curves classification
tools for the LSST era.33
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Light curve
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The main survey and the deep fields of LSST

Wide Fast Deep fields (WFD)

Deep Drilling Fields (DDF)
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LSST simulated data
Two methodologies:

1 A training and
a test on deep
fields (DDF)

2 A training on
deep fields and
a test on the
main survey
(WFD)

DDF light curve

WFD light curve
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Results on DDF
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Results on WFD
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Further analysis of the behaviour of PELICAN
DDF
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SDSS data
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Summary

Era of Big data

The future surveys will deliver multi-band 
photometry for billions of sources

Many issues for the classification 
algorithms

Small size of the training database due to the 
limitation of the spectroscopic follow-up

Several problems of representativeness 

Nature of data : sparse with an irregular 
sampling

Promising results for the estimation of photometric redshifts

 We developed a CNN used as a classifier to estimate photometric redshifts and their 
associated PDFs. • Our work shows significant significant improvements for:

the dispersion of photometric redshifts,

the PDFs that are well calibrated
no measurable bias with the reddening and the inclination of galaxies
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Summary

New solutions for the classification of light curves

 PELICAN obtained the best performance ever achieved with a non-representative training 
database of the SPCC challenge

PELICAN is able to significantly remove several types of non-representativeness between the 
training and the test databases due to :

   the limit in brightness and redshift of the spectroscopically confirmed data

   the different observational strategies

   the difficulty of simulated data to reproduce perfectly real data

PELICAN can deal with the data that are sparse, with an irregular sampling

Perspectives

Propagation of uncertainties due to the photometric redshift of the supernovae and the 
host galaxy and the classification errors in the Hubble diagram 

Estimate photometric redshift from light curves with PELICAN
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Appendix

The Light Curve Image (LCI)
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Appendix

The Light Curve Image (LCI)
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Appendix

Impact of Signal-to-Noise Ratio (SNR) on widths of PDFs
The Stripe 82 region, which combines repeated observations of the same
part of the sky, gives us the opportunity to look into the impact of SNR
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