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General Introduction

Current cosmology questions

e What is the nature of dark
matter ?

e What is the nature of dark
energy 7

o Is it "dark energy" arising
from quantum fluctuations in

) the vacuum, or is it new

Credit : NASA gravitational physics?




General Introduction
Need accurate redshits for cosmology

As the universe expands, the radiation is stretched in wavelength
1 +z= Aobs

emit
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General Introduction

Supernovae la as cosmological probe

History of the Universe WANTED

Accelerating
expansion

DARK ENERGY
Farthest

Slowing supernova First proof with supernovae la

expansion
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(~15 billion years)
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o Dark energy causes the universal

m-M (mag)

expansion to accelerate — 0,=0.3,0,=0.7
. 36 — 0,703,200 7]
® Recent observations of supernovae 0210000
have produced a value for an sar T
acceleration that implies a universe *
that is about 70 % dark energy 0.01 0.10 1,00
z High-z



General Introduction

The spectroscopic follow-up to

redshift

Identify and measure the redshift of a galaxy

flux AF, (arbitrary scole)

galaxy

Determine the nature of an observed object

Supernovae

identify SN la and measure
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General Introduction

The future image surveys

@ The Large Synoptic Survey Telescope (LSST)

@ a 10-year survey of the sky
o first light in 2020

@ a 8.4-meter special three-mirror
design, creating an
exceptionally wide field of view,
and has the ability to survey the
entire sky in only three nights.

@ 200 petabyte set of images and
data products!

Artist view, Credit : Todd Mason,
Mason Productions Inc. / LSST Corporation



General Introduction

The future image surveys

@ Euclid

@ understanding the nature of the
source responsible for this
acceleration

slitless spectroscopy
launch is planned for 2021

a 6-year survey

10 billion sources will be
observed !

Artist view of the Euclid Satellite -OESA



General Introduction

The era of Big Data

1924. Henry Drapper Catalog (0.2 Million)

1989 . Guide Star Catalog (20 MiIIion)yé




General Introduction

A full photometric analysis

Use all the photometric information in several photometric bands

Light curves of Supernovae Galaxy images

BLUE MAGNITUDE

O 50 100 150 200 250 300 350 400
DAYS AFTER MAXMUM LIGHT

In the LSST context, full photometric SN analyses
become crucial



General Introduction

Outline

@ Deep Learning

© Photometric redshifts

© Classification of light curves

@ Conclusion
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Deep Learning

History

1957 Perceptron (Rosenblatt)

1986 MLP (Rumelhart et al.)

1998 LeNet (LeCun et al.)

2012 A CNN won ImageNet (Alexnet, Krizhevsky et al.)
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Deep Learning

The main property of deep learning

Classical methods

Input data Feature crafting

Deep learning

Input data Feature learning

13

Separation with a
classifier

The best feature
__» Space representation is
found by the network
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Deep Learning

LeNetb

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@26x28

S |"r r
I
|T_

INPUT
32x32

C5: layer g
5% F;, layer (I]‘gTPUT

I
Full mﬂ;{ecngn | Gaussian connections
C i L o] ons i Full i

Lecun et al. 1998

3 operations:

@ Convolution + non linearity (feature extraction)
@ Pooling
@ Fully Connected (classification)



Deep Learning

Convolutions

An image Akernel A cpnvolved
image
1/1(1,0(0
oj1/1|1/0 1111 6|53
0/0|1 1|1 4|16 |4
0O/0|1|1]|0 0 3 4
0/1({1|0]|0

o]

Convolution operation is followed by a non linear function (tanh, ReLu...)
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Deep Learning

Convolutions

Feature maps from the 1
convolution layer

pCREER

16



Deep Learning

17

Pooling

A feature map Pooling operation A subsampled feature
map
5(1 3|0
Max in a 2x2
0j112)7 sliding window 57
21114 with a stride of 2
31|12

Max in a 2x2
sliding window
with a stride of 2

64x64 32x32



Photometric redshifts

First step: The estimation of photometric redshift
with a deep architecture

J. Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez

18
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Existing methods

Photometric redshifts

A template fitting method

A machine learning method

05T T T r T r T
t SDSS database results
r for template fitting 08 F ~
04f - ; ’
& ] Sl
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i
= 4
r n=007% _] 02 F 9
0t E onmap = 0.015
o(Az) = 0.024
If <|Az|/(1+2s)> = 0.014 ]
0.0 1 1 1 1 0.0 1 A L n
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0.6 08
spectroscopic redshift Zpec

From Greisel et al. 2013

From Beck et al. 2016

Preliminary results with Deep Learning methods (Hoyle 20186,

D’lsanto 2018)



Photometric redshifts

Photometric redshifts from SDSS images using a Convolutional
Neural Network (J. Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez)
A&A, 611 :A97, 2018, arxiv: 1806.06607, code available at:
https://github.com/jpasquet/Photoz

Key elements :

© A representative and a complete training database with r-band
magnitude < 17.8 and redshift, z < 0.4 (516,525 galaxies)

© Photoz values + associated Probability Distribution Functions

© Photoz immune to IQ variations and neighbours
contamination

© A dedicated Neural Network architecture

Results obtained :
Clear improvements compared to other methods!

20



Photometric redshifts
Input SDSS galaxy images transmitted to the CNN

bt £ 7L B3

— crowded images
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Photometric redshifts

Our architecture

g@g@§@ | @g l—ll -
l—
/ Output probabilties \

Vector of posterior
probabilities for the
galaxy redshift to be -
in a z-bin ;

v
/_Input images of size 64x64

z
The estimator for z-phot is the
centroid of the zPDF

29
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Performance never

Photometric redshifts

achieved before!

0.30] CNN
<Az>=0.00010
0.25 o=0.00912

7=0.31%

ZPHOT

B16

<Az>=0.00062
7=0.01350
n=1.34%

015  0.20

ZSPEC

0.10

(Az)=1.0x10"*

0=9.1x10""
7=0.31%

A2=( 2= Zgec (14 2p)
0=1.4826 X MAD
MAD = Median(|A z— Median(A z)|)
n=I0z|>0.05

025  0.30 010 015  0.20

ZSPEC

0.25 0.30
4 Factor of 6 improvement <A z>=6>< 1074

0=1.3%x10"
n=1.35%

44— 30 % improvement

<4~ Factor of 4 improvement
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-- Photometric redshift

-- Spectroscopic redshift
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Photometric redshifts

Assess the prediction quality of our PDFs

The PIT statistic (Dawid 1984) is based on the histogram of the cumulative
probabilities at the true value. For galaxy i with spectroscopic redshift z; in the
test sample :

PIT,—:/ PDFi(z)dz

g
b

12} ' -t e

RELATIVE FREQUENCY
1
|
1
1
L
T

CNN
0.2¢ - - underdispersed by 20%
- - overdispersed by 20%

0.0 0.2 0.4 0.6 0.8 1.0
PIT
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Photometric redshifts

Impact of the extinction of our Galaxy on photometric

redshifts

Our method tends to overestimate redshifts in obscured regions
(confusing galactic dust attenuation with redshift dimming), unless
E(g_v) is used for training

0.014
0.012 N
&
0.010 e 124000
0.008] 420000
&
., 0006 T 16000
<
0.004
412000
0.002
418000
0.000f - teoee .
4 =—a CNN
14000
—0.002 #—* CNN w/o EBV
o—o Bl6
—0.004
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

EBV
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Photometric redshifts

Impact of the disk inclination of galaxies on photometric

redshifts

Our method automatically corrects for galactic dust reddening which
increases with disk inclination

0.015 .
=—e CNN
L N
e - B1l6
0.010 ,, 3000
2500
. .
4 0005 5, 2000
. 1500
0.000} - BT g gl 1000
SN
S 500
-3
~0.005
1 02 03 04 05 06 07 08 09 10

Disk inclination (b/a)
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Photometric redshifts

Neighboring galaxies

The MAD deviation is significantly improved for galaxies with fainter
neighbors (43%) compared to those without

0.015
—&- W/O NEIGHBORS
—&- WITH NEIGHBORS

0.012

0.009F

OmMAD

0.006 |

0.003

0.000 0.00 0.05 0.10 0.15 0.20 0.25 0.30

ZSPEC
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Photometric redshifts

Summary results

Trial training sample bias o n
size
Training with 80% of the dataset 393,219
Full test sample 0.00010 0.00912 | 0.31
(B16) (0.00062) (0.01350) | (1.34)
Widest 20% of PDFs 0.00005 0.00789 | 0.06
Stripe 82 only -0.00009 0.00727 | 0.34
Stripe 82 with widest 20% of PDFs removed 0.00004 0.00635 0.09
Training with 50% of the dataset* 250,000 0.00007 0.00910 | 0.29
Training with 20% of the dataset 99,001 -0.00001 0.00914 | 0.30
Training with 2% of the dataset 10,100 -0.00017 0.01433 1.26
Training and testing on Stripe 82 15,771 -0.00002 0.00795 | 0.38




Classification of light curves

Second step: The classification of light curves of
supernovae (SN la/ SN Non-la)

Johanna Pasquet, Jérome Pasquet, Marc Chaumont and Dominique Fouchez

20



Classification of light curves

Difficulties for the classification

Many factors degrade the performance of machine learning

algorithms:
Small training databases
Data can be sparse with an irregular Non-representativeness between
sampling the training and the test databases

o
t

62400 62405 62410 62415 62420 62425 62430 62435 6244
MJD (julian day)

® Training database

o B Test database



Classification of light curves

Non-representativeness between the training and test

databases

training database training database
test database test database

w2 22 24 2 28 % 2 % o4
median r-band mag

os

)
redshift

The non-representativeness of the databases, which is a problem of

mismatch, is critical for machine learning process.
29



Classification of light curves

PELICAN: a deeP architecturE for the Light Curve ANalysis

(Johanna Pasquet, Jéréome Pasquet, Marc Chaumont and Dominique Fouchez, just
submitted)

Key elements :

© a complex Deep Learning architecture to classify light curves
of supernovae

@ trained on a small and biased training database

© overcome the problem of non-representativeness between the
training and the test databases

@ deal with the sparsity of data and the difference of sampling
and noise

The ability of PELICAN to deal with the different causes of

non-representativeness between the training and test databases,

and its robustness against survey properties and observational

conditions, put it on the forefront of the light curves classification
22 tools for the LSST era.



Classification of light curves
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Classification of light curves

The main survey and the deep fields of LSST

Wide Fast Deep fields (WFD)

- Deep Drilling Fields (DDF)

25



Classification of light curves

LSST simulated data

Two methodologies:
DDF light curve

SN la spec from kraken 2026 DDF, z=0.301

@ A training and S :
a test on deep I
fields (DDF) .

{ ot
o b ow "

60350 60360 60370 60380 60390 60300 60310
MJD (julian day)

@ A tra”.”ng on WED light curve
deep flelds and s SN la spec from kraken 2026 WFD, z=0.31

a test on the w ol
main survey = '
(WFD) i

sl t

62400 62405 62410 62415 62420 62425 62430 62435 62440
MJD (julian day)
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Classification of light curves

Results on DDF

—e— PELICAN - Train 2k Test 22k (0.986) Testing database
--e- SALT2+BDTs - Train 2k Test 22k (0.890) Training database
1.0 1.6
—_— .
1.4
0.9 1.2
>
8 - 1.0
5 . z
Jos - 0.8
<
0.6
0.7 \ 0.4
0.2
06 0.2 0.4 0.6 0.8 1.0 12 0.0
Redshift
Training database Test database Recall,, Recall,,
(spec only) (phot only) Accuracy | precision, >0.95 | Precision,>0.98 | AUC
500 1,500 0.849 0.617 0.479 0.937
(0.746) (0.309) (0.162) (0.848)
D 2,000 2,000 0.925 0.895 0.818 0.984
D (0.783) (0.482) (0.299) (0.882)
F 2,000 22,000 0.934 0.926 0.851 0.986
(0.793) (0.436) (0.187) (0.880)
10,000 14,000 0.979 0.992 0.978 0.998
(0.888) (0.456) (0.261) (0.899)
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Classification of light curves

Results on WFD

—e— PELICAN - Train 3k Test 40k (0.996) Testing database
--+- SALT2+BDTs - Train 3k Test 40k (0.709) Training database
1.0 . 1.75
— 1.50
0.9
> 1.25
o
(o] .~ -
5 - 1.00=
Jos .
< 0.75
\
/ 0.50
0.7
0.25
06 0.2 0.4 0.6 0.8 1.0 12 0.00
Redshift
Training database Test database Recall,, Recall,,
(spec only) (phot only) Accuracy | Precision,> 0.95 | Precision, > 0.98 AUC
DDF Spec : WEFD : 15, 000 0.917 0.857 0.485 0.974
w 2, 000 (0.650) (0.066) (0.000) (0.765)
F'| DDF Spec : WFD : 40, 000 0.940 0.939 0.729 0.984
D 3,000 (0.650) (0.111) (0.000) (0.752)
DDF Spec : WEFD : 80, 000 0.962 0.977 0.889 0.992
10, 000 (0.651) (0.121) (0.010) (0.760)
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Classification of light curves

Further analysis of the behaviour of PELICAN

DDF

WFD

—— Accuracy

Training dataset

—— Testing dataset

2 .
5
os 0.8 0.8
< N o 04
Number of observations SNR Peak magnitude
s 08 08 0s
2
I
e |/
Sos 0.8 0.8
0.7 b 07 0 0.7 02
0. o0, ?

15 20 25 30 35 40
Number of observations

o
%20 225 23.0 235 24.0 245 23.0 255 260
Peak magnitude



Classification of light curves

SDSS data

Real Light Curve Simulated Light Curve
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Classification of light curves

(®) Featured Prediction Competition

PLAsTiCC Astronomical Classifica $25,000

Can you help make sense of the Universe? Rizofunei

ﬁ LSST Project - 1,094 teams - a month ago

Data Kemels Discussion Leaderboard Rules Team My Submissions Late Submission

W In the money W Gold B silver M Bronze

# b Team Name Kerne Team Memb Score Entrie Last
1 Kyle Boone 0.68503 104
2 a2 Mike & Silogram 0.69933 176
3 - Major Tom 0.70016 366
4 -1 AhmetErdem 0.70423 233
5 SKZ Lost in Translation 0.75229 343
6 -2 Stefan Stefanov 0.80173 28
7 .3 hklee 0.80836 63
8 -1 rapids.ai 0.80905 133
9 -3 Three Musketeers 0.81312 313

10 -3 &) 0.81901 246

41



Conclusion

40

Summary

Era of Big data

The future surveys will deliver multi-band
photometry for billions of sources

Promising results for the estimation of photometric redshifts

We developed a CNN used as a classifier to estimate photometric redshifts and their
associated PDFs. « Our work shows significant significant improvements for:

B the dispersion of photometric redshifts,
B the PDFs that are well calibrated
B no measurable bias with the reddening and the inclination of galaxies



Summary

New solutions for the classification of light curves

PELICAN obtained the best performance ever achieved with a non-representative training
database of the SPCC challenge

PELICAN is able to significantly remove several types of non-representativeness between the
training and the test databases due to :

B the limit in brightness and redshift of the spectroscopically confirmed data
B the different observational strategies
W the difficulty of simulated data to reproduce perfectly real data

PELICAN can deal with the data that are sparse, with an irregular sampling

Perspectives

M Estimate photometric redshift from light curves with PELICAN

W Propagation of uncertainties due to the photometric redshift of the supernovae and the
host galaxy and the classification errors in the Hubble diagram

A3

Conclusion



Appendix

The Light Curve Image (LCI)

Time
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Appendix

The Light Curve Image (LCI)

Time
AOverﬁtting of missing data (zero values)
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Appendix

act of Signal-to-Noise Ratio (SNR) on widths of PDFs

The Stripe 82 region, which combines repeated observations of the same
part of the sky, gives us the opportunity to look into the impact of SNR

Stripe 82

--+-0.039 0.042 0:045

_PDF WIDTH

0.048

0.051 .054 0.060
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