## The ECLGRM pipelines at the FSC:

First thoughts towards DC-1

Maxime Bocquier Laurent Bouchet Frédéric Daigne Frédéric Piron Claude Zurbach

SVOM FSGS key point – IAP, 01/24/2019

### **ECLGRM** goals for DC-1

Design the VHF and X-band containers from the service delivered for DC-0

### Adapt the VHF and X-band containers to the FSC evolutions

- Use the common JSON message scheme more extensively
- Add interactions of the containers with the MDB
- Etc

### Input data: add scientific content (unlike DC-0)

- Define and simulate ECLAIRs and GRM data to test the algorithms along their development
- Contribute to the definition of physical scenarios for DC-1 (general effort)

### Develop more elaborate analysis algorithms

- But not necessarily final
- Focus on few analysis tasks (in agreement with APC/CEA/IRAP partners)

### Output data: generate meaningful products

 Contribute to the definition of SP format / headers (general effort) following the working session at IAP in Oct. 2018

### ECLGRM VHF pipeline for DC-1 (TBC)

### Provide a VHF pipeline with complete analysis of the count LC

- Quick bkg-subtracted count LC, count peak fluxes, T90, hardness ratios

### Input VHF data

- Use the IAP GRB DB to define:
  - Test cases for the software development
  - Larger samples for statistical analysis
- Use the IAP static simulator to generate ECLAIRs and GRM photon lists
  - Also to optimize the definition of the HR energy bands (several possibilities)
- Add a constant bkg
- Use the CEA packet simulator to generate count LC with official sampling

### Optional (likely in 2020)

- Simulate a variable bkg (e.g. during slew)
- Meaningful T90 error
- Use more realistic instrument responses and bkg (see next slide)
- Quick LC and peak fluxes in physical units? Needs the GRM quick spectrum

### ECLGRM X-band pipeline for DC-1 (TBC)

### Provide an X-band pipeline with simplified algorithms

- S/w to identify the main episodes in the LC (time intervals for spectral analysis)
- S/w to compute T90 and time-dependent source spectra ("simple" fits)
- Implement communication with the ECLAIRs GP pipeline (imaging)

### Input X-band data

- Use the IAP GRB DB to define:
  - Test cases for the software development
  - Larger samples for statistical analysis
- Use the IRAP simulator (based on GEANT4) to generate ECLAIRs counts (source signal + bkg along the orbit)
  - OGIP compliant FITS files needed for spectral analysis
- Ask IHEP again to run GRM simulations (update request in backup slide)
  - Or ask for J. Zhang's scripts and couple them to the IRAP simulator

### Optional (likely in 2020)

- Simulate a slew
- Meaningful T90 error
- Secondary products from spectral analysis: source light curves and peak fluxes, time-dependent fluences and hardness ratios

Lags

# Backup

### VHF scientific products

|    | PRODUCT       | SHORT DESCRIPTION                        | DEVELOPMENT                           |
|----|---------------|------------------------------------------|---------------------------------------|
|    |               |                                          |                                       |
| 1  | TT_ECL        | Trigger time ECLAIRs VHF Alert (T\$_0\$) | CEA (S. Schanne)                      |
| 2  | QCL_ECL       | Quick confidence level ECLAIRs VHF Alert | CEA (S. Schanne & A. Claret)          |
| 3  | QPO_ECL       | Quick position ECLAIRs                   | CEA (S. Schanne)                      |
| 4  | TT_GRM        | Detection time GRM                       | IHEP (S. Jianchao)                    |
| 5  | QCL_GRM       | Quick confidence level GRM               | IHEP (S. Jianchao)                    |
| 6  | QPO_GRM       | Quick source position GRM                | IHEP (S. Jianchao)                    |
| 7  | QSP_PARAM_GRM | Quick spectral parameters GRM            | IHEP (S. Jianchao)                    |
| 8  | OBLC_ECL      | On-board count light curves ECLAIRs      | CEA (S. Schanne)                      |
| 9  | OBLC_GRM      | On-board count light curves GRM          | IHEP (S. Jianchao) / CEA (S. Schanne) |
| 10 | QLC_ECL       | Quick light curves ECLAIRs               | LUPM (F. Piron)                       |
| 11 | QLC_GRM       | Quick light curves GRM                   | IHEP (S. Jianchao) / LUPM (F. Piron)  |
| 12 | QPF_ECL       | Quick peak flux ECLAIRs                  | LUPM (F. Piron)                       |
| 13 | QPF_GRM       | Quick peak flux – GRM                    | IHEP (S. Jianchao) / LUPM (F. Piron)  |
| 14 | QT90_ECL      | Quick duration ECLAIRs                   | IAP (F. Daigne)                       |
| 15 | QT90_GRM      | Quick duration GRM                       | IHEP (S. Jianchao) / IAP (F. Daigne)  |
| 16 | QHR_ECL       | Quick hardness ratios ECLAIRs            | IAP (F. Daigne)                       |
| 17 | QHR_GRM       | Quick hardness ratio GRM                 | IHEP (S. Jianchao) / IAP (F. Daigne)  |
| 18 | QHR_ECLGRM    | Quick hardness ratios ECLAIRs and GRM    | IAP (F. Daigne) / IHEP (S. Jianchao)  |
| 19 | CRCLASS       | Crude classification                     | IRAP (JP. Dezalay) / IHEP             |

### Products 1 – 3 based on ECLAIRs data only

- and requiring an excellent knowledge of the ECL flight software
- Products 4 7 based on GRM data only
  - and requiring an excellent knowledge of the GRM flight software
- Products 8 19 products based on ECLAIRs and GRM data
  - and obtained with very similar or identical methods → \*\_ECLAIRs and \*\_GRM "mirror" products
  - or obtained in joint analyses (QHR\_ECLGRM & CRCLASS)

### VHF data analysis tasks (→ s/w modules)

- OTLOC task: onboard trigger time and localisation (ECL and/or GRM)
  - Products [1-3, 4-6]: trigger confidence level, T0, quick position
- QTEMP task: quick temporal analysis (ECL and/or GRM)
  - Data preparation: background time-dependent modeling & subtraction
  - Analysis of bkg-subtracted count light curves (+ selection of the useful GRDs)
  - Products [8-15]: source count light curves, peak flux, T90
- QSPEC task: quick spectrum (only GRM)
  - Use GRD total count spectra and bkg count spectra (generated onboard)
  - Use GRD response matrices (DRMs); no imaging → GRD DRM generator needed
  - Spectral fits with XSPEC (PGstat) using simple spectral models (PL, COMP, Band)
  - Products [7]: crude time-integrated spectrum, parameters and covariance matrix
- QHR task: quick hardness ratios (ECL and/or GRM, ECLGRM)
  - Use the results of the previous tasks
  - Products [16-18]: time-integrated HR
- CLASS task: trigger crude classification from the products above
  - Products [19]: GRB, other?
- The analysis procedures for ECL and GRM are identical
  - Apart from OTLOC and QSPEC tasks

### X-band scientific products

|    | PRODUCT        | SHORT DESCRIPTION                              | DEVELOPMENT                                 |
|----|----------------|------------------------------------------------|---------------------------------------------|
|    |                |                                                |                                             |
| 1  | PO_ECL         | Source position ECLAIRs                        | CEA (A. Gros, A.Goldwurm) / LUPM (F. Piron) |
| 2  | PO_GRM         | Source position GRM                            | IHEP                                        |
| 3  | T90_ECL        | Duration ECLAIRs                               | IAP (F. Daigne) / LUPM (F. Piron)           |
| 4  | T90_GRM        | Duration GRM                                   | IHEP / IAP (F. Daigne) / LUPM (F. Piron)    |
| 5  | SP_ECL         | Spectra in physical units ECLAIRs              | LUPM (F. Piron)                             |
| 6  | SP_GRM         | Spectra in physical units GRM                  | IHEP / LUPM (F. Piron)                      |
| 7  | SP_ECLGRM      | Spectra in physical units ECLAIRs and GRM      | LUPM (F. Piron) / IHEP                      |
| 8  | LC_ECL         | Light curves in physical units ECLAIRs         | LUPM (F. Piron)                             |
| 9  | LC_GRM         | Light curves in physical units GRM             | IHEP / LUPM (F. Piron)                      |
| 10 | PF_ECL         | Peak fluxes ECLAIRs                            | LUPM (F. Piron)                             |
| 11 | PF_GRM         | Peak fluxes GRM                                | IHEP / LUPM (F. Piron)                      |
| 12 | FLUENCE_ECL    | Fluences ECLAIRs                               | LUPM (F. Piron)                             |
| 13 | FLUENCE_GRM    | Fluences GRM                                   | IHEP / LUPM (F. Piron)                      |
| 14 | FLUENCE_ECLGRM | Fluences ECLAIRs and GRM                       | LUPM (F. Piron) / IHEP                      |
| 15 | HR_ECL         | Hardness ratios – ECLAIRs                      | IAP (F. Daigne)                             |
| 16 | HR_GRM         | Hardness ratios – GRM                          | IHEP / IAP (F. Daigne)                      |
| 17 | HR_ECLGRM      | Hardness ratios ECLAIRs and GRM                | IAP (F. Daigne) / IHEP                      |
| 18 | LAG_ECL        | Time lags between light curves – ECLAIRs       | IAP (F. Daigne)                             |
| 19 | LAG_GRM        | Time lags between light curves – GRM           | IHEP / IAP (F. Daigne)                      |
| 20 | LAG_ECLGRM     | Time lags between light curves ECLAIRs and GRM | IAP (F. Daigne) / IHEP                      |

Eiso and Liso not included here (external redshift needed)

#### Product 1 based on ECLAIRs data only

- and requiring an excellent knowledge of the ECL instrument

### Product 2 based on GRM data only

- and requiring an excellent knowledge of the GRM instrument

### • Products 3 – 20 based on ECLAIRs and GRM data

- and obtained with very similar or identical methods → \*\_ECLAIRs and \*\_GRM "mirror" products
- and obtained in joint analyses (\*\_ECLGRM joint products)

### X-band data analysis tasks (→ s/w modules)

#### TEMP task: temporal analysis (ECL and/or GRM)

- Data preparation: background modeling & subtraction
  - ECL: imaging with GP pipeline
  - GRM: no imaging → <u>time-dependent bkg model</u>
- Analysis of bkg-subtracted count light curves (+ selection of the useful GRDs)
- Products [3-4]: source count light curves, T90, time intervals for spectral analysis (main episodes)

### LOC task: localisation (ECL and/or GRM)

- ECL: imaging with <u>GP pipeline</u>
- GRM: if significant signal in the 3 GRDs
- Products [1, 2]: source position

#### SPEC task: spectral analysis (ECL and/or GRM, ECLGRM)

- Data preparation: generate count spectra and detector response matrices (DRMs)
  - ECL: source count spectra from <u>GP pipeline</u>; DRM from <u>ECL CalDB</u>
  - GRM: GRD total count spectra and bkg count spectra (model)
  - GRM: no imaging → GRD DRM generator needed
- Spectral fits with XSPEC (PGstat) using simple spectral models (PL, COMP, Band)
- Products [5-7]: time-dependent source spectra, parameters and covariance matrices

#### LC, FLUENCE and HRL tasks (ECL and/or GRM, ECLGRM)

- Use the results of the previous tasks
- Products [8-20]: flux light curves and peak flux, (time-dependent) fluences, hardness ratios & lags

#### The analysis procedures for ECL and GRM are identical

Apart from LOC task and data preparation steps (TEMP and SPEC tasks)

### X-band pipelines



### **Need for GRM simulations**

 GEANT4 simulations using the new GRM design to support the development of the analysis software

#### GRD background simulations

- Simulations for several pointings of the GRM, in order to sample the effect of the Earth occultation in each of the 3 GRDs for different orbital configurations
- Simulations of detector activation due to SAA passage: possible feedback from (or reuse of) HXMT data?

### GRD response simulations

- One GRD with a gamma-ray source placed at different angles, e.g., equally spaced in cos(theta) by steps of 0.05
- DRM generator in any GRB-Earth-detector configuration to account for the GRB signal scattering on the Earth atmosphere and on the spacecraft (e.g., see the Fermi/GBM gbmrsp tool at the Fermi Science Support Center)

#### Documentation for each simulation

Detailed summary, posterior analysis and verification of the generated bkg / rsp files