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 Excited-state g factors 
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Nuclear spectroscopy 
with a twist! 

gSPEC – g factors at FAIR 
 
• Fast beams 
• Focus on excited states & -ray measurements 
• TDPAD/Transient Field/Recoil in Vacuum/Decay spectroscopy – IPAC 
• Isomeric states/short-lived states 
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• Some physics of moments 
 Nuclear collectivity 
 Emerging collectivity 
 Shell model applications 
 Isomers – High-spin and K-isomers 

 
 
 
 

• Experimental methods – opportunities and challenges 
 Transient fields 
 Recoil in vacuum (including TDRIV) 
 Decay spectroscopy IPAC method 
 TDPAD external (and internal?) fields 

 
 

 

Increasing relevance 
for FAIR 
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Nuclear Collectivity 
R(E(4+) / E(2+)) Systematics plot (Burcu Cakirli) 

g factor data for first 2+ states  
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Emerging nuclear collectivity 
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 (g7/2)2 



Shape coexistence in the even-Hg isotopes:  
NOTE characteristic parabolic energy trend 

80Hg mid-shell 

Figure from J. Elseviers et al. 
PR C84 034307  2011 

Slide from John Wood 
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g factors & collectivity 

Nushellx with interactions from Alex Brown – PRC 71, 044317 (2005) 
Data: ANU & ORNL: PRL 94, 192501 (2005); PRC 76, 034306 (2007);  
PRC 76, 034307 (2007); PRC 88, 051304(R) (2013) 

 (g7/2)2 

Questions 

 

Need data! 

 

E0, M1, E2 

e.g. 6+ g factors 
TDPAD  IPAC 
 
Many methods; 
Many facilities? 
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 Do we understand the sd shell? 
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• g.s. moments of odd-A nuclei – sensitive to odd nucleon not the ‘core’ 
 

• g(2+) measured mainly in N=Z nuclei where g(2+) ~ 0.5 
 

• USD shell model can fail for excited states with N  Z 

B.P. McCormick et al. PLB 779 (2018) 445 

18O 

22Ne 
N=Z+2 



 Ge and Se isotopes 
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Shell model: jj44B interaction (Alex brown) 

Shell model Shell model 

Ge Data: Gurdal et al PRC 88, 014301(2013); Se Data: Speidel et al PRC 57, 2181(1998) 

Level schemes: Phys. Scr. 88 (2013) 045201 
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High-spin isomers near 208Pb 

Collective octupole transitions near 208Pb 
Talk by Robert Janssens at NS18 

Octupole transitions near 208Pb 
 
• Enhanced i13/2   f7/2 transitions ~20-30 W.u. 

 
• Coupling to 3 excitation of 208Pb core 

 
o nominal i13/2 state contains f7/2  3 

 

o nominal f7/2 state contains i13/2  3 
 

 
Question: How does E3 strength develop as protons and neutrons are added? 
 
• Adding successive h9/2 protons and p1/2 neutron hole to 208Pb  



High-spin isomers near 208Pb 
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NPA 448 (1986) 189 
TDPAD @ ANU mid 1980s! 
Rn, Fr, Ra isotopes 



Isomers in Rn isotopes 
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NPA 448 (1986) 189 

Octuple collectivity in new regions?  • 132Sn contrast with 208Pb 
• Octupole collectivity near 146Gd ? 



110Cd: g(10+) puzzle 
100Mo(13C,3n)110Cd  45 MeV 

Measured 𝑔 10 + = −0.09(3) by integral perturbed angular distribution:  
𝜔𝜏 = −𝑔

𝜇𝑁

ℏ
𝐵𝜏 where 𝐵 = 33 tesla is internal field at site of implanted Cd in Gd 

g(10+) = -0.09(3)   

Expected 𝑔 ~ − 0.2 for (h11/2)2 
 

Thus 𝑔 ~ − 0.1 looks WRONG! 
 
Need to check internal field: 
TDPAD with LaBr3 detectors 
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Nucl. Phys. A 591, 533 (1995) 

Robust 𝜔𝜏 measured 



LaBr3 TDPAD 
98Mo(12C, 3n)107Cd into Gd  
E = 640 keV, 11/2, T1/2 = 74 ns; precession period T~12 ns 
48 MeV pulsed beam from ANU 4UD Pelletron accelerator 
Time Dependent Perturbed Angular Distribution 
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Tim Gray 

Excitation functions 



 gamma and time spectra 
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HPGe 

LaBr3 

847-keV isomer decay 



 107Cd in gadolinium 
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The period matches that of the expected ~ 33 Tesla field but: 
• Decaying amplitude means a distribution of fields 
• Low amplitude of R(t) implies low-field sites 
• Accumulating radiation damage 

Angular distributions set expected 
amplitude of R(t) 



 Outcomes 
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• Successful application of LaBr3 detectors to 
the in-beam TDPAD method 
 

• Gadolinium hosts may be of limited use 
(complex field distributions; radiation damage) 
 

• 10+ state in 110Cd g factor consistent with 
seniority-2 h11/2 configuration 
 
 



 K isomers 
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Physics Letters B 726 (2013) 675 

𝐾 = ∑𝐾𝑖 

Multiquasiparticle states: 

𝐾𝑔𝐾 = ∑𝐾𝑖𝑔𝐾𝑖 



 K isomers 
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𝐾 = ∑𝐾𝑖 

Multiquasiparticle states: 

𝐾𝑔𝐾 = ∑𝐾𝑖𝑔𝐾𝑖 
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 Open questions 

24 

• What is the relation ship between collective magnetism and pairing? 
• How do we understand the high-K g factor data?  

• High-K isomer moments are interesting! 

NPA 589 (1995) 222 

NPA 669 (2000) 27 

… the renormalization of the rotational g-factor in the low-K, single-quasiparticle 
bands of odd rare-earth nuclei, compared with their even neighbours, is 
predominantly due to Coriolis interactions 
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 Transient Fields – 50 years in 2018 
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Δ𝜃 = −𝑔
𝜇𝑁
ℏ
 𝐵(𝑣 𝑡 )𝑒−(𝑡+𝑡𝑡)/𝜏𝑑𝑡

𝑇𝐹𝑒

0

 

𝑡𝑡 𝑇𝐹𝑒 

Generally insensitive to lifetime 
𝜏 ≫ 𝑇𝐹𝑒 < 1 ps 

o Good for relative g-factor measurements on picosecond states 
 

• Conventional and inverse kinematics (target vs beam excitation) 
• Good if calibrate relative to independently known g factor 
• Gives the *sign* 



High Velocity Transient Field (HVTF) 
measurements at NSCL 

Coupled Cyclotrons 
(NSCL) 

K500 
40 MeV/nucleon 
after thick 
wedge v  0.3 c 

i.e. v > 2 Z v0 

Radionuclides 
produced 

at >100 MeV/nucleon 

A1900 

Experimental 
endstation 

(SeGA) 

K1200 

phoswich 

38,40S 
 42,44,46Ar 

Au Fe 

355 110 

40 MeV/A 

mg/cm2 

40Ar   38S, 105 pps 
48Ca  40S, 104 pps 
48Ca  42,44,46Ar, 105 pps 

Magnetic 
field 



HVTF measurements on 38,40S 

TF strength vs ion velocity 

High velocities Large fields 
Experimental uncertainties rival 
stable-beam measurements 

Stable-beam data: Rutgers: Phys Rev C 72, 014309; 
Bonn: Phys Lett B 571, 29. 

PRL 96, 112503 (2006) 
PRC 74, 054307 (2006) 



• HVTF – “competitive” up to Z ~ 30 but still need ~104 events 
• Must slow ions to v~Zv0 
•  > 10 ps best for HVTF 

 Limitations of HVTF 
TF versus velocity – low-Z Polarization vs Z 

PRC 85, 034334 (2012) 
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• g factors from B(E2) experiments 
• Analyze particle- angular 

correlations 

Attenuation coefficient  due to  
RIV: contains information about  
the nuclear moment  

J electron spin 
randomly oriented 

I nuclear spin 
aligned by reaction 

F = I + J 

136Te 

scattered beam 
ion 

Ti Target recoil 

(p,p) 

 ray emitted  
at angle (,) 

10  kG

FF’  |g| 

Coulomb excited beam 
emerges from target as 
highly charged ion 

RIV g-factor measurements 

 Recoil In Vacuum: 136Te 

410 MeV 
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Angular correlations 

Data from PRL 94, 192501 (2005) 

unperturbed perturbed 

p = angle difference around beam axis 
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 132Sn region 

=  cases studied by RIV method @ HRIBF 

=  cases studied by TF method @ ANU 

Z=50 

N=82 



 136Te: B(E2), Q(2+), g(2+) 
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Culmination of HRIBF work: 112-128Sn, 132-136Te 



 Recoil in Vacuum: 136Te 
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Full PRC paper on RIV (Editor’s choice): 



 RIV/D or TDRIV Concept 
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More than 40% of ions are H-like, 

i.e. single 1s electron: 

 
 
 

24Mg@120 MeV 

2.4 mg/cm2  
93Nb 

1.7 mg/cm2 

197Au 

D=T 

Reset foil 

-detector 

array 

J electron spin 
randomly oriented 

I nuclear spin 
aligned by reaction 

F = I + J 

FF’  |g| 

Particle 

detector 

 tesla7.16)0( 3ZB 



 Precise g factors in sd shell 
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PRL 2015 
Recoil in vacuum with H-like ions 



g(2+) Mg isotopes – toward 32Mg 
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sdpf 
? 

26Mg 26Mg relative to 24Mg 

PRL 114, 062501 (2015) PLB 779, 445 (2018) 

Time dependent recoil in vacuum: 24Mg Transient Field Projectile excitation: 26Mg 

ALTO Orsay HIAF Canberra 



g(2+) Mg isotopes – toward 32Mg 
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Time dependent recoil in vacuum: 28Mg @ ISOLDE 
IS628 November 2017  (G. Georgiev, AES et al.) 

o Miniball detectors at ~90°angles 

o ~7% efficiency at 1.4 MeV 

o first use of the Miniball plunger 

o 3.9 mg/cm2 Nb target 

o 1.1 mg/cm2 Ta degrader 

o aiming for 20 plunger distances 



g(2+) Mg isotopes – toward 32Mg 
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Time dependent recoil in vacuum: 28Mg @ ISOLDE 
IS628 November 2017  (G. Georgiev, AES et al.) 

• Calibration measurement 
o 22Ne – from EBIS rest gas 

o beam energy  - 5.5 MeV/u 

o intensity – 1.5 ppA (limited by the 
scattering rate in the CD detector) 

o 5 days stable beam 

 
• 28Mg (t1/2 = 20.9 h) 

o expected beam intensity:  1x106 – 5x105 pps 

o available: + 5x106 pps!! 

o expected well-pronounced particle – γ angular correlations observed 

o 10 plunger distances measured 

o data under analysis in Orsay and Canberra 



 RIV with higher Z? 
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More than 40% of ions are H-like, 

i.e. single 1s electron: 

 
 
 

24Mg@120 MeV 

2.4 mg/cm2  
93Nb 

1.7 mg/cm2 

197Au 

D=T 

Reset foil 

-detector 

array 

J electron spin 
randomly oriented 

I nuclear spin 
aligned by reaction 

F = I + J 

FF’  |g| 

Particle 

detector 

 tesla7.16)0( 3ZB 



 Higher Z with Na-like ions? 
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𝐵 0 ∝ 𝑍3    H-like ions oscillate too fast for Z > ~16. Try Na-like ions for 56Fe. 
 
• 56Fe beam on C+Ni stretched foil 
• Orsay Plunger ‘OUPS’ and Miniball @ ALTO 
• Reaction kinematics to optimize Na-like ions - based on detailed charge-state 

distributions from ANU 

Looks promising – we see correct period among “other stuff” 



Modeling RIV 
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Approach: see Chen et al. PRC 87, 044305 (2013) 
Builds on our work on modeling the Auger cascade for medical radioisotopes 

MultiConfiguration Dirac Fock, GRASP2K 



Modeling RIV  
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GRASP2K+Monte Carlo 
Model atomic decay 

Na-like Fe 



RIV @ FAIR 
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RIV has been very productive and is very promising 
 
 
BUT… 
 
 
High energies and large beam spots will be a challenge at FAIR 
 
TDPAD and Decay spectroscopy methods are a more appealing place top start. 
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 g factors in decay spectroscopy 

Perturbed angular correlation measurements.  Observe:  
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𝜔𝜏 = −𝑔 
𝜇𝑁
ℏ
 𝐵 𝜏 

I 

Ii 

If 

2 

1 

2 

Ferromagnetic host (Fe, Ni, Co, …) 

Precessions  

1 

Dilute impurity 
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 
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 

IPAC/Radioactivity method 



 g factors in decay spectroscopy 
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Example:  138I  decay into N=84 138Xe   (July 2018) 
 

138I from Caribu implanted into iron in Gammasphere 



 g factors in decay spectroscopy 
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• Lll 
 
 

138I from CARIBU implanted into iron in Gammasphere 

Magnetic field provided by 
permanent magnets 

Gammasphere target ladder 



 g factors in decay spectroscopy 

50 

Energy (keV) 

co
un

ts
 

Gate on 2  0 

0  2  0 

Firm spin 
assignments  

Hope to 
measure  
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14 May 2018, ANU, Canberra G. Georgiev 

Time Dependent Perturbed Angular Distributions (TDPAD) 

• Isomeric states with lifetimes between “few ns” and “few ms” 

 
• Time reference (t=0) – pulsed beam or 

ion implantation detector 

• Detectors at 90° with respect to each other 
observing the decay of the state 

• Spin aligned ensemble – how? 

• Perturbation – (external) magnetic field 

• Detect the modification of the angular 
distribution of -rays 

𝜔𝐿 = − 
𝑔𝜇𝑁𝐵

ℏ
  Larmor frequency 

𝑅 𝑡 =  
𝐼 𝜃,𝑡 − 𝜀𝐼(𝜃+90°,𝑡)

𝐼 𝜃,𝑡 + 𝜀𝐼(𝜃+90°,𝑡)
 =  

        = 3𝐴2𝐵2
4+𝐴2𝐵2

𝑐𝑜𝑠{2(𝜃 − 𝜔𝐿𝑡 − 𝛼)}  



 TDPAD: isomers near closed shells 
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• 208Pb region “North East” of 208Pb extensively studied in the past 
 

• 132Sn region currently under study 
 

• 68Ni …78Ni … 
 

• 100Sn region ? 
 

• SE and SW of 208Pb? 
 

• K isomers? 



14 May 2018, ANU, Canberra G. Georgiev 

Spin alignment in two-step projectile fragmentation 

Dispersion matching technique: 
 - thick primary target high yield of the  
secondary beam 
 - single (few?) nucleon removal reaction  
high level of spin alignment 
 access to much broader range of the nuclear chart! 



14 May 2018, ANU, Canberra G. Georgiev 

Proof of principle – 32Al (2010) 

Production : 48Ca → 33Al → 32Al 

• Production of 32Al with 8(1)% alignment 
• First measurement of g(32Al)=1.32(1) 
• FOM improvement >50 

TDPAD  setup 
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