FPGA-based embedded vision systems

François BERRY et al.

francois.berry@uca.fr

Camera and « Smart camera »

Caméra = Device providing images or sequence, video,....

Traditional machine vision system

Camera and « Smart camera »

Traditional camera

- Imager
- Electronics
- Interfaces

Traditional camera provides images and videos.

Smart camera

- Imager (and sensors)
- Onboard computer
- Interfaces

Smart camera delivers abstracted image data and is also configurable and programmable

Smart camera

A definition

A smart camera is an embedded machine vision,

- in addition to image capturing circuitry,
- includes a processor, which can extract information from images without need for an external processing unit,
- interfacing devices used to make results available to other devices.

Smart Camera = 2 Capture + Processing + Communication

Anatomy of a smart cam

Sensing devices:

Imager: CMOS, CCD,...

Proprioceptive devices: Inertial set,...

Communication unit:

Wireless: Wifi, Bluetooth, ZigBee...

Wired: USB, FireWire, Ethernet

Gigabit, Camlink,...

Processing Unit:

Micropocessor

DSP

FPGA

ASIC, GPU,...

CMOS Imager

The major advantage that **CMOS imagers** enjoy over their CCD counterparts is the ability to <u>integrate a number of processing and control functions</u> directly onto the sensor integrated circuit, which lie beyond the primary task of photon collection.

Common CMOS features

CMOS sensors use the same technological process as modern microchips:

- Many foundries available worldwide
- Cost efficient
- Latest processes available down to 90/65 nm (Sony)

CMOS process enables integration of many additional features:

- Random pixel access, windowing, sub-sampling and binning
- Various pixel circuits from 3 transistors up to many 100 transistors per pixel
- Analog signal processing (e.g. CDS, programmable gain, noise filter)
- A/D conversion
- Logic (timing control, digital signal processing, etc.)

Random pixel access

- Different scanning methods are available to reduce the number of pixels being read:
 - Allows for higher frame rate or lower pixel rate (reduction in noise)
 - Can reduce power consumption due to reduced data

Windowing

- Reading of one or multiple rectangular subwindows
- Used to achieve higher frame rates (e.g. AO, guiding)

Subsampling

- Skipping of certain pixels/rows when reading the array
- Used to obtain higher frame rates on full-field images

Random

Read

- Random access (read or reset) of certain pixels
- Selective reset of saturated pixels
- Fast reads of selected pixels

Binning

- Combining several pixels into larger super pixels
- Used to achieve lower noise and higher frame rates

Others sensing devices

Imaging unit can be improved by others sensors such as:

• Inertial measurement unit:

(3 linear accelerations and 3 rotational velocities)

Used for:

- Image stabilization
- Inertial and Image fusion
- Inclinometer (with gravity)

provides reliable positioning, navigation,

and timing services

Anatomy of a smart cam

Sensing devices:

Imager: CMOS, CCD,...

Proprioceptive devices: Inertial set,...

Communication unit:

Wireless: Wifi, Bluetooth, ZigBee...

Wired: USB, FireWire, Ethernet Gigabit, Camlink,...

Processing Unit:

Micropocessor

DSP

FPGA

ASIC, GPU,...

Taxonomy of Communication units

Communication channel can be classified according to 5 factors (not exhaustive!):

- Bandwidth
- Distance range
- Compactness
- Determinism and Responsiveness
- Vendor interchangeability

Anatomy of a smart cam

Sensing devices:

Imager: CMOS, CCD,...

Proprioceptive devices: Inertial set,...

Communication unit:

Wireless: Wifi, Bluetooth, ZigBee...

Wired: USB, FireWire, Ethernet Gigabit, Camlink,...

Processing Unit:

Micropocessor

DSP

FPGA

ASIC, GPU,...

Processing Unit

The objective of Vision system is to measure different features of a specific object.

As every image contains a lot of unnecessary information, so data reduction is key for efficiency.

Mostly image processing tasks can be divided into 3 levels:

- Parallel data reduction, where the operations depends on the closest surroundings (e. g. noise reduction, edge detection).
- Serial data reduction, where data from the entire image is needed for the processing task (e. g. count the number of elements).
- Classification, that try to inform what we see.

Why FPGA-based Smart -cams?

- General purpose processors (GPPs) (single/multi-core)
- DSPs
- Parallel architectures built on the former
- GPUs
- ASICs

Why FPGA-based Smart -cams?

The hardware reconfiguration facilities offered by FPGAs

- brings flexibility (from full-fledged multi-softcore architectures down to low-level HW interfacing tasks)
- naturally supports co-design-based approaches
- is suitable for tightly embedded systems (with strong operational constraints)
- offers vast opportunities for design-space exploration

Synoptic of our smart cameras

Ours Smart cameras are FPGA-based systems and modular.

Few FPGA-based smart camera

OmniMOS

Few FPGA-based smart camera

BiSeeMOS

b) LoG Frame

c) Depth Frame

d) Depth Frame with a Threshold of 64/120

Disparity map 1024x1024 @ 200 fr/s

Few FPGA-based smart camera

DREAM-CAM

Imaging device:
APTINA
CMOS 1024x1024
Couleur/NB

Communication Board: USB2,0, Giga-ethernet

Application: Navigation

Grey-level Scanning platform: PANORAMOS

- Allows to acquire Grey-level image
- Extracts visual features on the flow
- Give a description by coordinates and Grey-level template
- Synchronization between mechanics and sensing

RESULTS:

- Innovative mechanical structure with hanging rotating part
- Full matching between mechanics and sensing

Grey-level Scanning platform: PANORAMOS

Processing

Deep learning approach

- Invention associated to LeCun in the late 90s [1]
- The state of the art in image classification[2], detection[3] ...

computations

- [1] LeCun et al. Gradient Based Learning Applied to Document Recognition IEEE 1998
- [2] Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks NIPS'12
- [3] Girshick et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation CVPR 2014

Deep learning approach

What features are learned?

Applied to image patches, well-known result:

Sparse auto-encoder [Ranzato et al., 2007]

Sparse coding [Olshausen & Field, 1996]

[Lee et al., 2007]

Sparse auto-encoder

K-means

Sparse RBM

Deep learning vs Computation....

Hardware Accelerators for DL

FPGAs for DL

- DSP Blocks (variable precision)
- In situ BRAM/SRAM
- Reconfigurability vs ASICs
- Logic fabric (we'll talk about that later)

Energie efficiency of AlexNet inference

Approximate Computing for Deep Learning

Twist plot* : DL tolerate approximate computing (AC)

Approximate arithmetic:

- Fixed point
- Dynamic Fixed point
- Binary and pseudo-binary
 Nets

Reduce operations:

- Prune neurons
- Low rank approximation of weights

* Well, no that much ...

francois.berry@uca.fr