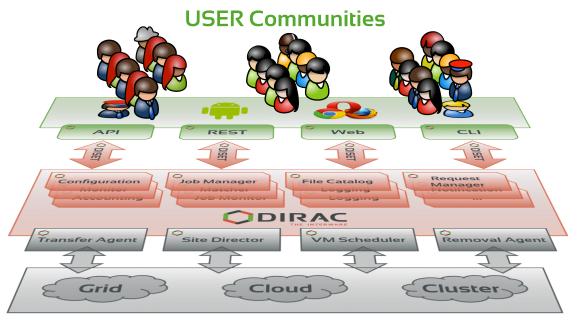
BigData with DIRAC



A. Tsaregorodtsev, CPPM-IN2P3-CNRS, Marseille

The DIRAC interware

- A software framework for distributed computing
- Builds a layer between users and resources
- Allows interoperability simplifying interfaces

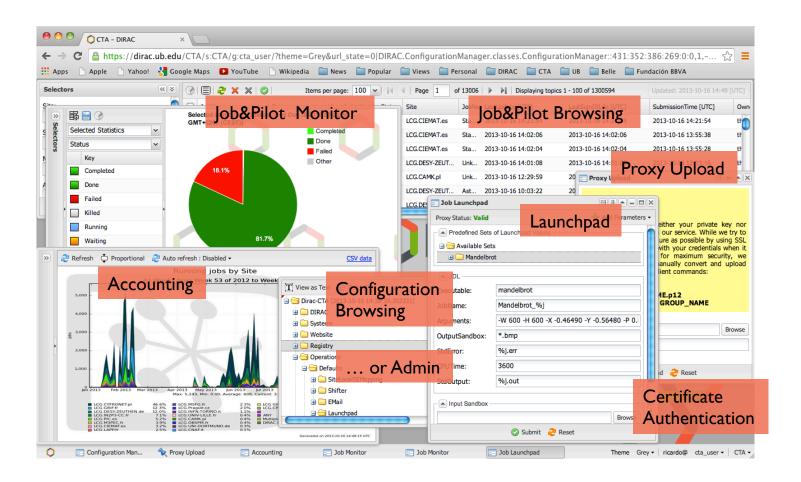
The project

- Originally developed to support the production activities of the LHCb experiment (~10 years ago)
- Today is a general purpose software, targeting several communities in high energy physics, astrophysics, life science, ...
- Open source project developed by communities, for communities
 - http://github.com/DIRACGrid/DIRAC
 - Publicly <u>documented</u>, active <u>assistance forum</u>, yearly <u>users workshops</u>, open <u>developers meetings</u>
- The DIRAC consortium as representing body
 - CERN, University of Barcelona, KEK, IHEP, University of Montpellier as members
- In 2017 started as IN2P3 project to support further software generalization
 - ▶ CPPM, CC-IN2P3, LUPM, Creatis/CNRS, University of Bordeaux

Gamma-ray Space Telescope

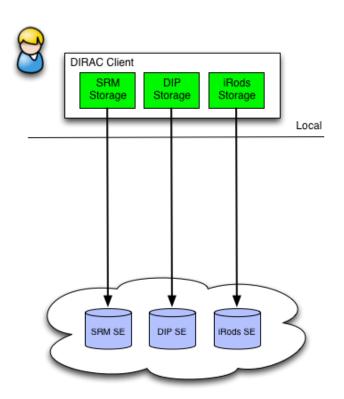
The actors

KEK-JAPAN


Main DIRAC components

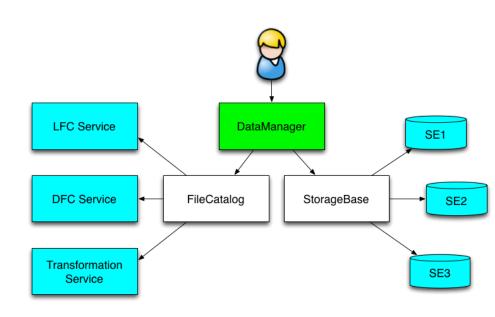
- Workload Management System (WMS)
 - Job brokering with Pilot Jobs
 - Interoperability with different types of computing resources
- Workflow Management System (Transformation System)
 - Used by production team to handle large productions
- Data Management System
 - ▶ All data operations (download, upload, replication, removal, ...)
 - File Catalog as Replica and Metadata Catalog
- Request Management System (RMS)
 - Asynchronous handling of requests, e.g. failed transfers recovery
- Resources abstraction
 - Storage
 - Computing

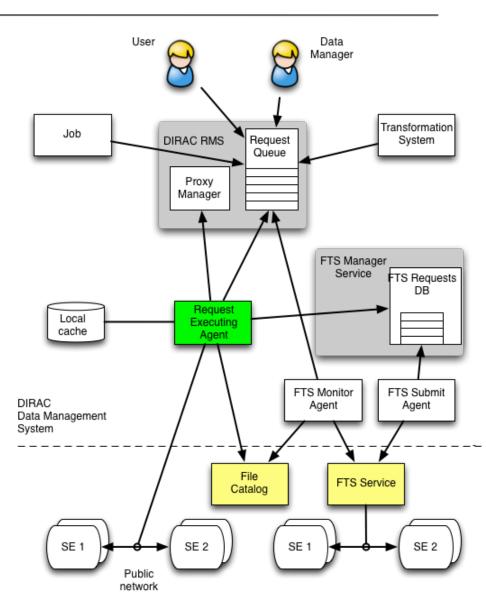
- Command line tools, Python API, RESTful interface
- Web portal

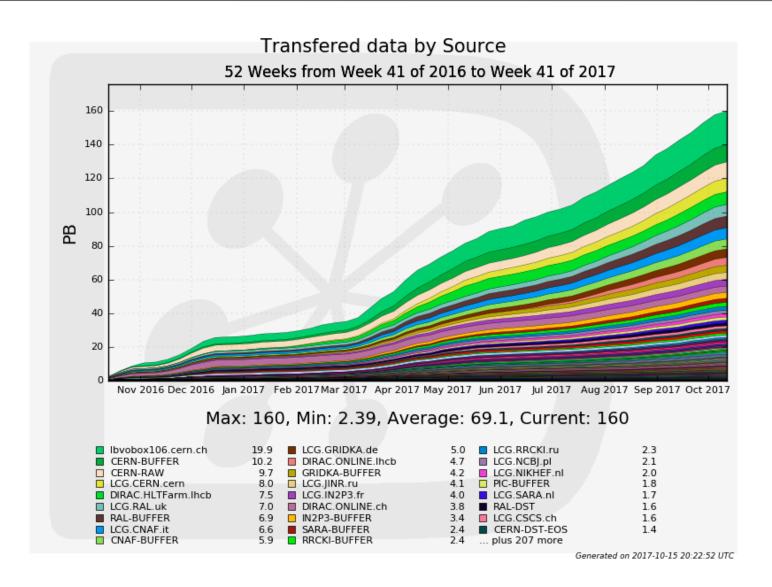

Distributed Computer

- DIRAC is striving to provide an abstraction of a single computer for massive computational and data operations from the user perspective
 - Logical Computing and Storage elements (Hardware)
 - ▶ Global logical name space (File System)
 - Desktop-like GUI

Storage plugins


- Storage element abstraction with a client implementation for each access protocol
 - DIPS, SRM, XROOTD, RFIO, etc.
 - gfal2 based plugin gives access to all protocols supported by the library
 - ► HTTP, DCAP, WebDAV, S3, ...
- Each SE is seen by the clients as a logical entity
 - With some specific operational properties
 - SE's can be configured with multiple protocols


- Central File Catalog (DFC, LFC, ...) is maintaining a single global logical name space
- Several catalogs can be used together
 - The mechanism is used to send messages to "pseudocatalog" services, e.g.
 - ▶ Transformation service (see later)
 - Bookkeeping service of LHCb
 - A user sees it as a single catalog with additional features
- DataManager is a single client interface for logical data operations


Bulk transfers

- Replication/Removal Requests with multiple files are stored in the RMS
 - By users, data managers, Transformation System
- The Replication Operation executor
 - Performs the replication itself or
 - Delegates replication to an external service
 - ▶ E.g. FTS
 - A dedicated FTSManager service keeps track of the submitted FTS requests
 - FTSMonitor Agent monitors the request progress, updates the FileCatalog with the new replicas

LHCb data transfers

Computing Resources: HPC

- Multiple HPC centers are available for large scientific communities
 - E.g., HEP experiments started to have access to a number of HPC centers
 - Using traditional HTC applications
 - Filling in the gaps of empty slots
 - Including HPC into their data production systems
- Advantages of federating HPC centers
 - More users and applications for each center better efficiency of usage
 - Elastic usage: users can have more resources for a limited time period
- Collaboration with HPC centers to integrate them into a common framework under the DIRAC WMS control
 - AMU Meso-center
 - ▶ HPC centers in Russia (Dubna, NNGU, others)
 - ▶ IHEP HPC center, Beijing
- Several centers already connected

- DIRAC is not a Big Data application itself
- It provides a framework for managing processing of big volumes of data in distributed computing systems
- As such it can be used to support running "Big Data" applications on a variety of resources