Results from O2 run – Multi-messenger observations of a binary neutron star merger GW170817

Loïc Rolland for the Virgo and LIGO collaborations

Virgo web site: http://public.virgo-gw.eu/ LIGO web site: http://www.ligo.org/

What is a gravitational wave?

GW origin

Masses in motion

Space-time deformation

Gravitational wave

- transversal plane wave
- propagation at the light speed c
- two polarisation states (+ and x)

Detectable effect on free fall masses

$$\delta L_x(t) = \frac{1}{2} h(t) L_0$$

h(t): amplitude of the GW

(h has no dimension)

Illustration of the metric variation with free fall masses initially located along a circle, for a + polarised GW propagating along z

A gravitational wave interferometer

For GW170814, first Virgo detected event: $h = 5x10^{-22} \rightarrow \delta L = \pm 0.8 \times 10^{-18} \text{ m}$

An international network of detectors

- ✓ Rejection of spurious local noise (coincidence) → better sensitivity
- ✓ Source localisation (triangulation)
- ✓ Wave polarization

 \rightarrow astronomy

Summary of O1 and O2 runs

Binary black holes Binary neutron stars

GW170814: the first Virgo event!

August 14, 2017 at 10h30m43s UTC

Combined SNR = 18 False alarm rate < 1 per 27000 years

False alarm rate:

Primary black hole mass m_1	$30.5^{+5.7}_{-3.0}\mathrm{M}_{\odot}$
Secondary black hole mass m_2	$25.3^{+2.8}_{-4.2}\mathrm{M}_{\odot}$
Chirp mass \mathcal{M}	$24.1^{+1.4}_{-1.1}\mathrm{M}_{\odot}$
Total mass M	$55.9^{+3.4}_{-2.7}\mathrm{M}_{\odot}$
Final black hole mass M_{f}	$53.2^{+3.2}_{-2.5}\mathrm{M}_{\odot}$
Radiated energy E_{rad}	$2.7^{+0.4}_{-0.3}\mathrm{M}_{\odot}\mathrm{c}^2$
Peak luminosity ℓ_{peak}	$3.7^{+0.5}_{-0.5} \times 10^{56} \mathrm{erg}\mathrm{s}^{-1}$
Effective inspiral spin parameter $\chi_{\rm eff}$	$0.06^{+0.12}_{-0.12}$
Final black hole spin a_{f}	$0.70^{+0.07}_{-0.05}$
Luminosity distance $D_{\rm L}$	$540^{+130}_{-210} \mathrm{Mpc}$
Source redshift z	$0.11^{+0.03}_{-0.04}$

→ a binary black hole merer, similar to the first ever detected event GW150914

Improvements with Virgo data

Better sky source localisation

Using only two LIGO detectors: 700 deg²

Including Virgo detector: 80 deg²

2D localisation

→ sky area reduced by factor ~10

3D localisation

→ sky volume reduced by factor ~20

First tests of GW polarisation

General Relativity

→ 2 polarization modes for GW

Generic metric theories of gravity

→ 6 modes allowed

New tests with GW170814

Interferometer sensitive to GW projected onto the detector local + mode
Can study GW polarization modes using multiple detectors with different orientations

 → pure + and x modes favoured wrt pure scalar of vector polarizations (polarization mixtures no tested yet)

Binary compact objects masses

Binary black holes

Binary neutron stars

In brief: physics w/ binary black holes

Astrophysical implications

Formation of massive stars?

Inference of BBH population distribution and merger rate

$$R = 12 - 213 \text{ Gpc}^{-3}.\text{yr}^{-1}$$

Estimation of GW stochastic background from BBH mergers

Tests of General Relativity

The first multi-messenger detection of a binary neutron star merger: GW170817

- GW data alone
- GRB association
- Electro-magnetic follow-up and kilonova
- · Measurement of the Hubble constant
- Searching for neutrinos

- LAPP 10

GW data alone

- GRB association
- Electro-magnetic follow-up and kilonova
- Measurement of the Hubble constant
- Searching for neutrinos

L. Rolland - 10 novembre 2017 - LAPP

The BNS merger in LIGO-Virgo data

August 17, 2017 at 12h41m04.4s UTC

Combined SNR = 32.4 False alarm rate < 1 per 8x10⁴ years

Abbott et al., PRL, 119, 161101 (2017)

Signal duration: 100 s (from 24 Hz)

GW170817 source localisation

- Sky location:
- rapid loc. with HL: 190 deg²
 rapid loc. with HLV: 31 deg²
 final loc. with HLV: 28 deg²
- Luminosity distance: 40⁺⁸₋₁₄ Mpc (~120 millions of light-years)
- → 3D position: 380 Mpc³

This is the closest and most precisely localized gravitational-wave signal!

- → triggered follow-up observations
- → and identification of NGC4993 as host galaxy

Comparing the detected GW signals

Shape of the GW signal → information on the source type and parameters

Estimation of intrinsic parameters

Bayesian fit of the waveform

Spin limit consistent with observed population

low-spin ($|\gamma| < 0.05$)

Theoretical spin limit

high-spin ($|\chi| < 0.89$)

Mass parameters

$M_{chirp}(M_{\odot})$	
$m_1~(M_{\odot})$	1.36-1.60
$m_2~(M_{\odot})$	1.17–1.36
(7.5)	a - 4±0 04

 $1.188^{+0.004}_{-0.002}$ 1.36 - 2.26

1.36

0.86 - 1.36

Dimensionless tidal deformability

 $2.74^{+0.04}_{-0.01}$ $2.82^{+0.47}_{-0.09}$ $m_{tot} \ (M_{\odot})$ $\Lambda(1.4M_{\odot})$ < 800< 1400

Masses of the objects

Degeneracy between mass ratio and aligned spin components

→ Masses < 2.3 M_☉

→ masses consistent with two neutron stars

Equation of state of the neutron stars

Tidal field of Deformation of the neutron star the companion

Imprint on the shape of the gravitational wave. from f>600 Hz $(\rightarrow parameter \Lambda)$

- Collision happens earlier than w/o tidal effect
- Modified final spin

→ disfavour equations of state of neutron stars that predict less compact stars: radius < 15 km

Expected electro-magnetic counterparts?

Short gamma-ray burst (sGRB):

- Jet
 - → prompt y-ray emission
 - few seconds after merger
 - last for <2 s
 - beamed
- Interaction of jet with interstellar medium
 - → afterglow emission
 - few days after merger
 - evolves from X-ray to radio

Kilonova

- Conversion of hot ejected matter into rprocessed elements, disintegration and thermal emission
 - → black body continuum + broad structures
 - few hours-days after merger
 - visible in UV, optical, IR
 - rapid spectral evolution

- GW data alone
- **Gamma-tray burst association**
- Electro-magnetic follow-up and kilonova Measurement of the Hubble constant
- Searching for neutrinos

L. Rolland - 10 novembre 2017 - LAPP

Association with a gamma-ray burst

GRB170817A detected by Fermi and INTEGRAL

- y-ray emission started ~1.7 s after merger time
- 3 times more likely to be a short GRB than a long GRB

GRB sky localisation (90% CL)

Time and localisation association chance probability: 5.0×10^{-8} \rightarrow association validated within 5.3σ

→ First direct evidence that binary neutron star mergers are progenitors of (at least some) short gamma-ray bursts!

New insight into gamma-ray bursts

GW170817 waveform → **loose limit on BNS viewing angle**, but degeneracy with source distance

- Θ < 56° from GW data alone
- Θ < 36° using the known distance to the host galaxy NGC 4993
- → compatible with jet pointing towards Earth

GRB170817A

- the closest short GRB with know distance (z~0.008) (previous closest, GRB061201: z ~0;11)
- 10² to 10⁶ times **less energetic** than other bursts
 - → implications/questions on the structure of the jet

Prediction of detection rates

- higher rate than previously expected for sGRB to be seen in gamma-rays
- 1-50 BNS mergers expected in LIGO-Virgo during run O3 (wrt previously estimated 0.04-100)
- → 0.1 to 1.4 joint detections for GW and Fermi sGRB during run O3 (end 2018-2019)

GW/GRB association and speed of gravity

- GW data alone
- **GRB** association
- Electro-magnetic follow-up and kilonova Measurement of the Hubble constant
- Searching for neutrinos

L. Rolland - 10 novembre 2017 - LAPP

The electro-magnetic follow-up campaign

Abbott et al., The Astrophysical Journal Letters, 848:L12 (2017)

16.4d

Radio

Following the optical transient

→ Decrease of light flux, faster at UV/blue than at NIR wavelengths

- colour changed from blue to red black body

- with apparition of lines

→ rapid cooling of ejecta (0.01 to 0.05 M_☉)

Data vs kilonova (pre-existing) models

Good agreement between **data** (black) and kilonova models behaviour (red):

- temporal spectral evolution
- apparition of broad spectral features

→ first spectroscopic identification of a kilonova

Models with different components and parameters:

- mass, spin and EOS of the neutron stars
- thermal effects, neutrino/radiation hydrodynamics, magnetic fields
- matter ejected in dynamic ejecta and winds
- matter composition: with or without lanthanides

Kilonova and nucleosynthesis of heavy nuclei

β⁻ disintegrations Neutron capture

→ Binary neutron star mergers are probably the main sources of heavy elements in the Universe

- GW data alone
- GRB association
- Electro-magnetic follow-up and kilonova
- Measurement of the Hubble constant
- Searching for neutrinos

L. Rolland - 10 novembre 2017 - LAPP

New measurement of the Hubble constant

H_o describes the expansion rate of the (present) Universe

GW170817 can be used as a standard siren

$$D_{luminosity} = H_0 \times v_r$$

 Estimated directly Determined from from GW signal host galaxy NGC4993
$$(43.8^{+2.9}_{-6.9}\,\mathrm{Mpc}) \qquad (3017\pm166\,\mathrm{km/s})$$

 \rightarrow inferred Hubble constant: $H_0 = 70^{+12}_{-8} \,\mathrm{km/s} \,\mathrm{Mpc}^{-1}$

Completely new independent measurement of H₀

→ will help in understanding curent 'tension'...

Abbot et al., Nature, vol. 551, 7678 (2017)

- GW data alone
- **GRB** association
- Electro-magnetic follow-up and kilonova Measurementsn of the Hubble constant
- Searching for neutrinos

L. Rolland - 10 novembre 2017 - LAPP

Search for high-energy neutrinos from GW170817

IceCube

ANTARES

Pierre Auger Observatory Thermal MeV neutrinos

High energy neutrinos (10² to 10¹¹ GeV)

 → no signficant neutrino counterpart within 500 s around GW170817, nor in the subsequent 14 days

Consistent with typical GRB observed off-axis, or with low luminosity GRB

Will continue rapid search for neutrino candidates from GW sources

→ could improve fast localisation of GW events down to ~1 deg²

A long non-exhaustive list of new data and tests

Astrophysical implications

Formation of BNS

Origin of GRB, jet beaming

Kilonova modelling

Equation of state of NS (r<15 km)

Short- or long-lived post-merger remnant neutron star?

Inference of BNS population distribution and merger rate

$$R = 1540^{+3200}_{-1220} \text{ Gpc}^{-3}.\text{yr}^{-1}$$

 $(R < 12600 \,\mathrm{Gpc^{-3}.yr^{-1}} \,\,\mathrm{from}\,\,01)$

Estimation of GW stochastic background from BNS mergers

→ will be detected in the coming years

Tests of General Relativity

Difference between speeds of gravity and light: $[-3x10^{-15}; +7x10^{-16}] \times c$

Search for deviations from GR in waveform

Study of GW polarisation

New bounds on Lorentz violation

New test of the equivalence principle

Cosmology

Independent measurement of Hubble constant

Improving the LIGO-Virgo sensitivity

Virgo upgrades in 2018, before O3:

- Re-installation of monolithic suspensions
- Installation of frequency independent squeezer bench
 - Modifications of parts of optical benches to reduce optical losses
 - More digital alectronics and channels to be collected
- Increase of laser power
 - · Adapt the photodiodes
- Test of Newtonian noise sensors
- Installation of MuxDemux electronics
- Reduce calibration/reconstruction uncertainties
 - Installation of photon calibrator and tests of Newtonian calibrator
- Improve/automatize data quality and data analysis for faster alerts

Virgo upgrades in 2020, after O3:

- Installation of SR mirror
- Installation of high power laser
- Installation of frequency dependent squeezer bench
 - New optical benches and new vacuum tanks
 - Low loss optics
 - · New optics and more electronics

Summary

Virgo has successfully joined the gravitational wave detector network!

First tests
of GW polarization

First observation
of a binary neutron star merger

First BNS-short GRB
association

First photometric observation
of a kilonova

First GW measurement

of Hubble constant

Looking forward to detect
NS-BH,
BNS and BBH stochastic backgrounds,
Supernova, ...
and to have other

and to have other multi-messenger detections!