Discussion on the integrator specifications with comparison of the 3 options

Debriefing meeting at LPC, 28 April 2016 François Vazeille

- Summary of the TileCal Calibration systems in the upgrade scheme.
- TileCal data for the Cesium source moving.
- TileCal data for the Luminosity measurements.
- Chicago integrator.
- Argonne integrator.
- Clermont-Ferrand integrator.
- Summary of specifications.

Summary of the TileCal Calibration systems in the upgrade scheme

- 4 complementary systems acting at various levels of the whole electronic chain
- + likely a 5th system for the Back end electronics not shown here.

- 1. At the Tile/Fiber level: Cesium radioactive source and p-p Minimum Bias events.
- 2. At the Light Mixer/PMT level: Laser.
- 3. At the Very Front End electronics level: Charge Injection System.
- 4. At the Front End Board digital level: Digital tests.
 - 1. PMT gain adjustment/calibration and long term monitoring, plus calibration transport from the ATLAS Test Beam.
 - 2. Short term monitoring and calibration.
 - 3. Electronics calibration in pC.
 - 4. Working tests of the Main Board/Daughter board communication.

TileCal data for the Cesium source moving

- Source speed: 30 cm/s.

- TileCal scheme

```
Steel Master = 5.0 mm

Steel Spacer = 4.05 mm

Plastic Tile = 3 mm

Period = 18.325 mm

= 5 + 4.05 + 5 + 4.05 + 6

= 18.10 + G G = Glue
```


- Transit time:

In a Tile: 0.3/30 = 0.01 s = 10 ms.

From a Tile to the following one: 1.8325/30 = 61.08 ms.

- The optimum integration time is 10 ms,

that can be increased by two means:

- Digital sum without any problem.
- Analog integration using different time constants.

Orders of magnitude from Ilya's talk

By taking into account the non-replacement of the sources (Decreased activity)

- Cells A to D: 60 to 90 nA.
- Cells E1&E2: ≤ 4 nA.
- Cells E3&E4: ~ 0.06 nA. | Improvements of scintillators/Dividers are possible. but no Cs in them

Comment: for the E cells, the constraint of 10 ms with respect to adjacent Tiles is no longer relevant ⇒ digital sums are possible, and/or use of a 20 ms time in the analog mode in order to reach these low values.

TileCal data for the Luminosity measurements

Orders of magnitude from Ilya's talk

- Maximum value at the highest Luminosity:
 - A13 cell: 8 μA.
 - E cells: 100 μ A \Rightarrow no saturation for Argonne and Clermont-Ferrand.
- Minimum value for the vdM scan at very low Luminosity: up to 0.02 nA to cover almost all the A and E cells and part of B cells, if not 0.05 nA.

```
with which accuracy?

1% is impossible,

5 % ? 3% ?
```

Chicago integrator

Principle (Present ATLAS scheme):
 in 2 steps

Amplification because 1% signal used

Integration time from feedback capacitance/resistor

Combination of switches to control

- Timing and Gain.
- DC injection for calibration.

T = 10 + RC in ms, with C=0.1 10^{-9} From Ilya (Present 3-in-1): R from 2.7 to 100 M Ω \Rightarrow 10. 27 ms to 20 ms. (Ilya said 10.3 to 20).

Integrator and CIS Calibrations and Normal Run

PMT Current Distribution over Shaper/Integrator

Case I: Cs calibration (f<17Hz)

$$\omega << \frac{1}{(Ri + Zin). Cs}$$

$$Is \to 0$$

$$I \text{ int } \to Ipmt$$

Case II: Minimum current bias:

$$\omega \gg \frac{1}{(Ri + Zin). Cs}$$

$$Is = Ipmt \cdot \frac{Ri}{Ri + Zin}$$

$$I \text{ int } = Ipmt \cdot \frac{Zin}{Ri + Zin}$$

PMT Ri CS Integrator Shaper Zin=126Ω

R_f: sets integrator gain (6 settings). R_fC_f: suppresses output ripple.

PMT has an output capacitance of <40pF, it is not shown in above schematic and formulas.

For Ri=100K, Cs=0.1u, Zin=126, ω = 100rad/s. Shaper cut-off frequency: 1.4KHz at low end.

Performances

Present ATLAS scheme (from TIPP 2011 Chicago)

- Range 0.01 nA-1.4 μ A. - Non linearity < 1%. - 12 bit ADC. - Signal noise 0.003 nA

The PMT dark current is \leq 2 nA at 800 V, well above this noise!

Upgrade scheme

6 Integrator Gain Settings

For times > 20 ms \Rightarrow summations

Example of a reply of Ilya to a question of FV about current of 0.5 nA in the current ATLAS scheme.

```
Hi Francois, yes, these points are averaged over about 10 measurements each having the int.time of 20ms.

So effectively the int.time is about 200ms on this plot.

Best,

Ilya
```

On Fri, Apr 8, 2016 at 1:20 PM, François Vazeille vazeille@clermont.in2p3.fr wrote: Hello Ilya, looking at your very interesting and useful talk on the Cs system, I have a question about the VdM scan through the cell A13 (slide 6) where you measured a current of 0.5 nA.

What was the integration time of this measurement?

Did you add several measurements in order to increase the integration time?

With my best regards,

François

• Argonne integrator

• Up to 8 μA : external

≥ 40% signal used

- Current Integrator Part 1: External Circuit
 - Uses the Shunt Output Circuit on the QIE
 - The Dump Circuit is another set of splitter transistors that can be switched in through the slow control interface to the chip
 - Up to 60% of the input current can be diverted to an output pin. The integrator circuit would receive as low as 40% of the collected charge.
 - The saturation of the QIE is 875 pC/25 ns when the current splitter is turned on.
 - . Everything works as specified. The electronic noise with the splitter enabled is < 2 fC.
 - Digitization
 - · The shunt current is processed & digitized by an external integrator, 16 bits
 - . The maximum range will be ~8 uA ~les than half of Range O Range of the QIE

- Integration time of 2 ms, but will be fixed later at a constant value (10 ms?).
- 16-bit ADC range, having 122 pA/count \rightarrow That does mean it is the accuracy.

■ Above $8 \mu A$: internal from digital sum

Current Integrator Part 2: Digital Integration

- For currents above 8 uA, will use Digital Integration of the QIE data
 - · Digital integration simplifies the design on the analog integrator (fewer ranges).
 - The fractional uncertainty for the digital is less than 0.2% for currents > 0.1 μA (μ=2.5).
 - . This is easily implemented in pre-processor (along with the Look-up Table for the QIE data)

- It is a simulation.
- The integration time is not indicated, but it is 10 ms from Ilya.

- This plot goes up to 6 nA, but with an error of about 4%.
- 0.2% above 100 nA but the noise level is very optimistic.
- Used in fact above 8 μ A.

Clermont-Ferrand integrator

- Accuracy calculations on digital sum from the present noise performance
- Noise over the whole frequency spectra: 8 fC. (and not 7 fC HF noise only).
- For a realistic pulse shape (triangular), it corresponds to 400 nA, or 50 nA/fC.
- A "sum number" of 1 corresponds to the sum of 400 000 samples at 40 MHz.

Cesium scan	Cell value	Time (ms)	Sum number	Accuracy %	
	A to D 60 nA	10	1	1.05	
	A to D 90 nA	10	1	0.70	
	E1-E2 < 4 nA	10	2	> 11.2	
	E3-E4 ~ 0.06	Impossible, no Cs			
	Limit 1% 63 nA	10	1	1.0039	
	Limit 1% 45 nA	10	2	0.9938	

- For cesium scan, OK for A to D above 45 nA with an accuracy of 1% or better.
- E scintillators are likely thicker than Tiles
 - \Rightarrow a time > 20 ms could be chosen , but not too much.

- For Luminosity scans, larger times can be used.
- We must consider two extreme case: HL-LHC (7 10^{34} cm⁻² s⁻¹) and vdM scans (some 10^{30}).
- For vdM scans, we take a time of 2 minutes imposed by Luminosity blocks.

Luminosity scan	Cell value	Time (ms)	Sum number	Accuracy %
	HL minimum > 100 nA from (B-C)	10	1	< 0.63
	vdM A-B 0.02 nA	10	12000	28.9
	vdM A-B 0.05 nA	10	12000	11.5
	A, Limit 1% 0.58 nA	10	12000	0.9954
	A, 3% 0,192 nA	10	12000	3.007
	A, 5% <mark>0.115</mark> nA	10	12000	5.02

- No problem for HL scans, up to the 100 μ A value on E cell without saturation.
- vdM scan possible for A cells with an accuracy \geq 3%.

Requirements on Analog measurements

- ♦ For Cesium scans with times of 10 or 20 ms
 - Must overlap the Digital approach \Rightarrow Maximum value of 150 nA.
 - Must reach low values up to some nA for E1-E2.
- ♦ For Luminosity scans at Low Luminosity: to reach 0.05 nA in order to scan the B cells with an accuracy of 3% over durations of 2 minutes.

Dynamics from 0.05 nA on means to 150 nA in 10 or 20 ms.

TileCal data for the Cesium source moving

Recommendations from Ilya's talk

Check-List for any system to replace the current integrators

- → How do you transfer the EM scale, what would be the error?
- → Do you do Cs as good as before, 1% per measurement (10ms)?
- → Do you do Cs in E1&E2 to 1% accuracy on integral?
- → can you measure the currents upto 8uA (in A cells) and upto 100uA in E cells?
- → can you monitor the currents down to 0.02nA (w 1% per lumi block noise)?
- → can you have linearity (after all the corrections) between 1nA and 8uA within 1%?

Our specifications for the Analog approach

A fourth current copywith the ADC inside the chip.A DAC calibration

via current injection.

- Possibility of 2 integration times: 10 ms and 20 ms.
- Is it possible to use the same DAC?
- Dynamics for Cesium scans

Maximum: 150 nA.

Minimum: 0.5 nA for E1-E2 cells.

- Dynamics for Luminosity scans

Maximum: no constraint \Rightarrow we keep 150 nA and saturation accepted above.

Minimum: means are possible over 2 minutes \Rightarrow to reach 0.05 nA.