

CpFM for UA9

Cherenkov detector for proton Flux Measurements

Véronique Puill

A. Stocchi, D. Breton, L. Burmistrov, F. Campos, S. Conforti, V. Chaumat, J. Jeglot, J. Maalmi, V. Puill, W. Scandale, J.F Vagnucci

LAL proposal: Cherenkov proton counting detector

Initial idea belongs to the PNPI group and it had been already tested in SPS

Aim: count the number of protons with a precision of about 5% in the LHC environment (mean value over several bunches)

Constraints at the LHC:

- inside the primary vacuum (10^{-9} mbar) \rightarrow no degassing materials
- very hostile radioactive environment → radiation hardness of the detection chain
 → readout electronics at 300 m
- small place available → compact radiator inside the beam pipe

 → small footprint of the photodetector + cables + Inside the tunnel

Our proposal:

- > Radiator: quartz
- Photodetector: PMT or SiPM
- > Readout electronics: WaveCatcher

CpFM

Cherenkov detector for proton flux measurements

The LAL expertise in Quartz Cherenkov Detector

Prototype of the DIRC-like TOF detector

- Two quartz bars connected to one Photonis MCP-PMT (8x8 channels, stepped face, 10 micron holes).
- Tube operate at -2.7kV (gain ~ 7.0x10⁵).
- 16 channels connected to the USBWC electronics. developed by LAL and CEA/IRFU electronics team.
- Amplifiers (40dB).
- Filters (600MHz bandwidth).
- Installed at SLAC CRT in Fall 2010.

ch3 - ch5

of ev. 2634

-1.5

-0.5

-1

0.5

Time difference between not neighbor channels connected to same quartz bar. (type L3)

The LAL expertise in Quartz Cherenkov Detector

Study of Quartz fiber at BTF:

Simulation performed at LAL (L. Burmistrov)
Tests performed by the INFN team

Measurements @ BTF (INFN)

Detector testing devices at LAL

Optical Test benches for absolute calibration of photodetectors

Mapping MCP-PMT signal 4 channels

20 Y(mm)

10

10

1.5 × 10⁻⁷

1.½ 10⁻⁷

5. × 10⁻⁸

SiPM timing resolution

CORTO for the cosmic ray tests of detectors

Muons tracks passing through a detector

Scintillator image reconstruction

The CpFM concept for the SPS

- 1. interception of the channeled beam by a quartz radiator (retractable finger)
- 2. emission of Cherenkov light readout by a PMT placed 1 m from the beam pipe (light brought by silica fibers 4 m long)
- 3. PMT signal readout by the WaveCatcher module 40 m from this position

Radiation hardness of the CpFM components

Radiation levels close to the pipe:

 γ dose = 10 Mrad/year

thermal neutrons fluence = 10¹⁴ n/cm²/year

protons fluence = 10^{13} p/cm²/year

Quartz radiation hardness

M. Hoek, RICH 2007

3 fused silica types (Corning 7980, Schott Lithosil Q0, Heraeus Suprasil 1) irradiated with 150MeV **proton** beam with dose levels: 100krad, 1Mrad and 10Mrad

→ No significant radiation damage observed in any fused silica sample

γ Irradiation (⁶⁰Co) with a dose of 11 MGy (1100 Mrad): stability of the samples Heraeus Suprasil Standard & Infrasil, Spectrosil A and B (Saint-Gobain) and Corning 7940

Our choice: Corning 7980 & Heraeus Suprasil

Radiation hardness of optical fibers

Studies of radiation hardness of fibers (WLS, pure quartz, ...): upgrade of ATLAS HCAL, ATLAS LUCID, upgrade of CMS Hadronic Endcap

Irradiation with protons

transmitted light spectra from a 1.25m of qq fiber

U. Akgun, CALOR 2008

« Best » results with fiber with quartz core and quartz clad

Good candidate: LEONI all silica fiber:

core 600 µm attenuation @350nm <=0,06dB/m operational in 200-1200 nm range 18 rad/s (0.3 rad/s LHC worst)

Irradiation with γ and neutrons

P. Bruecken

FBP 600-660-710 spectra before and after irradiation: 17.6 MRad of n and 73.5 MRad of γ

Measurement after irradiation performed 10 weeks after it

Why not SiPM as the photosensor?

protons / neutrons bulk damages caused by

lattice defects

γ-rays, X-rays

creation of trapped charges near the Si-insulator interface

- ➤ increase of the dark current and the DCR
- ➤ change of the breakdown voltage
- >change of the gain and PDE dependence as a function of bias voltage

J. Anderson CALOR 2012

HAMAMATSU, KETEK and FBK SiPMs survive 10¹² n/cm² 1 MeV equivalent neutron flux (it was 10⁸ n/cm² 3 years ago) not enough for UA9

Effects of radiation on PMTs

protons / neutrons /γ-rays
coloring of the glass
glass scintillation

- >deterioration of the borosilicate window transmittance but not for a fused silica window
- >increase of the dark current
- no important change of the gain and quantum efficiency

No variation of the transmittance of quartz window

Our choices: Hamamatsu R762 & R7378A

HAMAMATSU R762

v: 60Co, E = 1.22 MeV Dose = 20±1 Mrad

The CpFM readout

The WaveCatcher boards and modules: 2 to 64-channel 12-bit 3.2GS/s oscilloscope-like digitizers, close to the picosecond level in timing precision

- Based on the **SAMLONG** Analog Memory ASIC
- Sampling rate ranging between 400 MS/s and 3.2GS/s.
- 1024 samples/channel
- 12 bits of dynamic range
- Small signal bandwidth > 500MHz
- Sampling time precision better than 5 ps rms at the system level
- Up to 64+8-channel synchronous system
- Advanced Oscilloscope-Like Software (Plug and Play)
- Embedded feature extraction: Baseline, Peak, Charge, CFD (TDC-like mode) ...
- Real-time channel hit rate measurement
- Data storage in ASCII and binary formats

The 8-channel desktop module

The 64-channel mini-crate

The CpFM readout

Characterization test bench for SiPMs @ LAL with the 8-channel WaveCatcher

Amplitude distribution performed by firmware measurement (< 30s).

Result of a hit rate vs amplitude plot. This type of measurement is automatically performed by the software.

Quartz radiator geometries simulations

More than 10 geometries tested (Geant 4 simulations @ LAL)

Best result with an angle of 47 ° between the beam direction and the quartz radiator

Which interface between the quartz radiator and the PMT?

▲ to the light transportation → simulation

Too much radiation to place the PMT close to the beam pipe → need of a (long) fibers bundle

The "best" geometry

Quartz radiator + viewport + fiber adapter = single piece

≈ 42 p.e/proton

Fiber adapter to optimize the entrance of the photons inside the fibers

The quart piece <u>is</u> the interface between the vacuum inside the beam pipe and the atmosphere inside the tunnel

BUT the manufacturing + polishing of such a complicate piece is impossible (even by the specialized producers) → need of a simpler but efficient geometry

→ New geometries

- ✓ Less complicated to manufacture
- ✓ End of the radiator (toward the fibre bundle) cut at an angle of 47°

Loss factors

- ✓ Loss of light at the optical couplings (bars/window window/bundle bundle/PMT)
- ✓ Loss of the light in the fibers bundle (dead space between the fibers)
- ✓ Attenuation of the signal inside the coaxial cable

Part of the detection chain	Factor of loss
Passage through the Quartz window	50 %
Fibers bundle	30 %
Optical couplings	30 %
40 m coaxial cable	20 %

CpFM Beam tests at BTF (2013)

Objective 1: CpFM proof of principle

all the CpFM components chosen for the SPS

Quartz bar Quartz fibers PMTs (R762) Coaxial cable (40 m) Readout electronics

- ➤ Measuremement of the signal attenuation in the cable
- > Best results with 45 ° between the e- beam direction and the quartz bar

CpFM Beam tests at BTF (2014)

Objective 2: validation of the CpFM final configuration

Quartz fiber bundle

Simulation parameters: Q ϵ = 25 %, CE=80 %

13,7 p.e/p (for 30 mm) \rightarrow \approx 2,3 p.e/p for 5 mm

Simulation & measurements in agreement

CpFM tests at BTF (2015)

Simulation of a quartz window between the bar and the bundle

Conclusions:

- ► L bars not enough polished → using of I bar
- Quartz window decreases the signal by a factor 2
- > 0.62 p.e. per incoming electron

resolution =15 % for 100 incoming electrons

CpFM structure

CpFM Beam Tests in H8 (2015)

180 GeV/c π^+

Tests performed with INFN & CERN teams

> 0.2 p.e. per incoming Pion

Need to performed other tests at BTF (where the beam can be controlled) to calibrate the chain → April 2015 with a copy of the CpFM

CpFM installation in SPS

Installation performed with INFN & CERN teams

- Tank and motorized support (INFN)
- 2 quartz bars inserted inside the SPS beam pipe
- Readout OK
- Waiting for beam!

Conclusion

- Cherenkov Detector in the primary vacuum = Challenging detector development
- Use of the LAL knowhow in the field of the Cherenkov detector simulation and readout electronics
- Installation of the CpFM in the SPS in January 2015
- Design of a new CpFM chain for UA9-SE